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Introduction

Several theories on the origin of eukaryotic cells have been
proposed. One of them, the endosymbiotic theory, proposed
by Margulis [46], claims that independent, free-living microbes
joined together, first casually, then in more stable associations.
As time passed and evolutionary pressures favored such
symbiotic unions, the partner microbes became permanently
joined in a new cell consisting of interdependent components.
According to this theory, three classes of organelles
(mitochondria, plastids, and undulipodia) once lived as
independent prokaryotes [8, 21, 37].

At least two classes of eukaryotic organelles, used for
respiration and for motility, have been suggested to have a
directly detectable legacy from such prokaryotic predation.
Extant intracellular structures, such as mitochondria,
hydrogenosomes, kinetosomes, and axonemes of undulipodia
are derived from ancient biotic relations among bacteria which
resisted the stringent selection pressures of death by predation
[3, 24, 32, 42].

The endosymbiotic theory also posits that the nucleus, like
the other eukaryotic organelles enclosed in double membranes,
was derived through capture by an engulfing species. The origin
of the eukaryotic nucleus has been interpreted by Gupta [38] as
an endosymbiotic event between two completely different
prokaryotes. One of these, the host, he thinks arose from within
the Gram-negative bacteria and the other, the guest, he thinks is
most likely an eocyte (a group of hyperthermophilic sulfur
metabolizing prokaryotes). The author bases his interpretations
on the sequences of the 70 kDa heat shock protein (HSP70) [38].

Besides, it has also been suggested that the first eukaryote
should have been a consequence of the symbiotic association
between an anaerobic, strictly hydrogen-dependent, strictly
autotrophic archaebacterium (the host), and a eubacterium (the
symbiont) that was able to respire, but generated molecular
hydrogen as a waste product of the anaerobic heterotrophic
metabolism [47]. Among the eukaryotes, trichomonads are the
earliest to diverge from the main line of eukaryotic descent. In
accordance with their ancient nature, these facultative anaerobic
protists lack two organelles found in most eukaryotes:
mitochondria and peroxisomes. Trichomonads do contain,
however, an unusual organelle involved in carbohydrate
metabolism, called the hydrogenosome. Hydrogenosomes lack
DNA, cytochromes and citric acid cycle enzymes. Instead, they
contain enzymes typically found in anaerobic bacteria, and are
capable of producing molecular hydrogen [48]. 

Archaezoan protists are thought to represent lineages that
diverged from other eukaryotes before the acquisition of
mitochondria and other organelles [9]. The parasite Entamoeba
histolyticawas originally included in this group. Ribosomal
RNA-based phylogenies, however, place E. histolyticaon a
comparative recent branch of the eukaryotic tree, implying that
its ancestors had these structures. Clark and Roger [11] showed
direct evidence for secondary loss of mitochondrial function
by isolating two E. histolyticagenes which encode proteins that
in other eukaryotes are found in the mitochondrion: the enzyme
pyridine nucleotide transhydrogenase and one chaperonin.

Germot et al. [29] found something similar in Trichomonas
vaginalis. This protist exhibits a fragment of sequence signature,
so far found only in mitochondrial HSP70 and in proteobacterial
DnaK. Thus, mitochondrial endosymbiosis might have occurred
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earlier than previously assumed. The trichomonad double
membrane-bound organelles, the hydrogenosomes, might have
evolved from mitochondria.

Biotic selection pressures, which are fundamentally different
from the abiotic ones in that they require organismic interaction,
can also be recognized. Predation must have been a prerequisite
to the theory that symbiosis is a source of evolutionary novelty.
Some of the first partnerships between microorganisms must
have been partially aggressive at first, and probably became stable
with time. Nowadays, relationships of that kind can be frequently
observed. We will mention a few examples of both predation
and stable partnerships in which bacteria are the main characters.

Extracellular predation

Several predator-prey relations described here were studied in
microorganisms living in karstic lakes [20, 25, 35]. In most
cases, bacterial cell lysis and digestion require contact between
the bacterium and its prey (intracellular and extracellular
predation), but in a few cases they are caused by extracellular
lytic enzymes [4, 16, 58]. Recently the lytic enzymes produced
by Stenotrophomonassp. against Chlorobiumcells have been
described [49]. As examples of extracellular predation, the
following bacteria are described: Ensifer, Micavibrio,
Vampirovibrio and Vampirococcus.

Ensifer adherens is an aerobic Gram-negative bacterium
consisting of rods (0.7–1.1 x1.0–1.9 µm) occurring singly or
in pairs. It can attach to various living Gram-positive and Gram-
negative bacteria but is not an obligate predator [5, 6].

Micavibrioadmirandus is a Gram-negative curved and small
(0.25–0.4 x 0.6–1.0 µm) bacterium, with a single polar
unsheathed flagellum 15 nm in diameter. It attaches to the surface
of the prey cells and destroys them without penetration [43].

Vampirovibrio chlorellavorus was described in 1972 by
Gromov and Mankaeva [31]. This bacterium has an eukaryote
(the protist Chlorella) as its only prey. Although it exhibits
certain similarities with Bdellovibrio, it differs from it in
important traits: elongated spirillar forms do not occur; growth
occurs outside the prey cell, which is not penetrated, and finally
the flagellum lacks a sheath.

Vampirococcuswas first described in 1983 by Esteve et al.
[23] in the course of ecological studies on the phototrophic
bacterial communities of sulfurous karstic lakes. Vampirococcus
is a Gram-negative, ovoidal (0.6 µm wide) bacterium, which
does not have any flagellum, is apparently an obligate anaerobe,
and seems to multiply only when attached to its prey (Fig. 1A).

Intracellular predation

Isolated by Stolp and first described by Stolp and Petzold in
1962, Bdellovibrio [57] has been the most well characterized
bacterium with predatory activity against other bacteria [15,

51, 56]. It is able to attack a wide range of Gram-negative
bacteria, penetrate their cell wall and henceforth generate several
progeny swarmers by multiple fission in the periplasmic space
of the prey cell.

Several years ago, whilst sampling lake Estanya [35] to
study natural samples from the bacterial layers, R. Guerrero
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Fig. 1 (A)Vampirococcus attached to cell wall of Chromatium spp. 
Bar = 1 µm. (B) Thin section of Daptobacter cells inside Chromatium spp. 
Bar = 1 µm. (C) Transmission electron micrograph of a thin section of
“Chlorochromatium aggregatum” consortia. Bar = 1.2 µm (courtesy of M.A.
Martínez, University of Girona, Spain)
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observed a new bacterium unique in its characteristics; it
appeared on cell lawns of Chromatium minus and then it was
isolated from lytic plaques. The infection cycle of this predatory
bacterium was determined by transmission electron microscopy
by I. Esteve, whereas its morphological and biochemical
characteristics were determined by N. Gaju. The bacterium,
named by R. Guerrero Daptobacter, penetrates both the cell
wall and cytoplasmic membrane of its prey. Once inside, it
digests the cytoplasm and subsequently divides by binary fission
to form two offspring cells. The characteristics of these bacteria
and their role in controlling populations of purple phototrophic
bacteria have been investigated in karstic lakes [22, 28, 34, 36,
45] (Fig. 1B).

The relationships among microorganisms are not only
antagonistic, sometimes stable relationships are mutualistic.
Recently two new symtrophic associations between
phototrophic and non-phototrophic bacteria were described.
Both consortia were observed and collected in the hypolimnion
of several lakes [1] (Fig. 1C).

Endo- and ectosymbiosis among 
bacteria and protoctists

There are many examples of bacterial endosymbionts of different
eukaryotes. Endosymbiosis with protoctists are of great interest.
Table 1 shows some typical examples of endosymbiosis.
Protozoans are often colonized by several bacteria. A recent, yet
classical, example was the case of an amoeba-bacteria symbiosis
which occurred spontaneously in 1966 when a strain of Amoeba
proteusbecame infected with many (60,000–150,000 bacteria
per amoeba) rod-shaped Gram-negative bacteria. At first the
bacteria were harmful to their hosts. With time, however, not
only did the bacteria become less virulent, but they also became
necessary to their amoeba host, which lost viability if deprived
of their endosymbionts [40].

A new microbial consortium was discovered by Finlay et
al. [26]: the partners are the ciliated protozoon Trimyema sp.
and a single species of methanogen. The consortium has been
maintained in culture for more than four years. Each ciliate
contains up to 300 symbiotic bacteria which are irregularly
disc-shaped and distributed throughout the host’s cytoplasm.
The symbionts belong to a new species of archaeobacterium
which is a close relative of the free-living methanogen
Methanocorpusculum parvum.

Cyanophora paradoxa represents the most extensively and
best investigated species within the Glaucocististophiceae. Note
that two strains of C. paradoxa have been found with different
cyanoplasts which conserve cyanobacterial plasma membranes
and are different from the chloroplast envelope membranes of
red or green algae [2].

Geosiphon pyriforme, a diphonous fungus, has as a
facultative endocytobiont which is a hormogonal cyano-
bacterium related to Nostoc punctiforme [53].

Table 1. Symbioses among organisms. Some examples

Host Symbiont Reference

1. Symbioses among bacteriaa

Different Gram-negative Bdellovibrio 57
bacteria

Chlorella Vampirovibrio 31
Chromatium Vampirococcus 23
Different purple bacteria Daptobacter 36
Thiothrix Daptobacter-like 45
Micrococcus Ensifer 6
Pseudomonas Micavibrio 43
Pelochromatium roseumb ovoid to rod-shaped 1

green bacteria

2. Cyanobacterial symbioses
Geosiphon pyriforme Nostoc 53
Cyanophora paradoxa Cyanoplasts 12

3. Prokaryotic symbionts of Amoeba and flagellates
Myxotricha paradoxa ectosymbionts 12
Amoeba symbiosome 50

4. Prokaryotic symbionts of ciliates
Paramecium octaurelia Lyticum flagellatum 44
Metopus striatus Methanobacterium formicicum 59
Euplotes aediculatus Polynucleobacter necessarius 39

5. Prokaryotic symbionts of animals
Calyptogena magnifica methylotrophic bacteria 60
Lucinoma aequizonata sulfur oxidizers 17
Solemya reidi idem 14
Riftia pachytila idem 7
Euprymna scolopes Vibrio fischeri 52
Polysyneraton Prochloron 18

6. Prokaryotic symbionts of plants
Wide variety of leguminous Rhizobium 54
Tropical leguminous trees Azorhizobium 54
Various tropical Bradyrhizobium 54

leguminous plants

aPredation and stable microbial associations
b The associated microorganisms are called “Chlorochromatium aggregatum”

Several different bacterial types have been reported in the
cytoplasm of amoebae, mostly enclosed in symbiosomes; they
are found single or in groups. Roth [50] was among the first to
confirm by electron microscopy the bacterial nature of
previously reported bacteria-like particles in vacuoles of
Amoeba proteus.

Paramecium tetraurelia has an endosymbiotic bacterium
named Lyticum flagellatum. These bacteria are straight rods,
0.6–0.8 µm 3 2.0–4.0 µm. They resemble bacilli in their
general appearance and they bear numerous peritrichous
flagella, but are not obviously motile. They are enclosed in
vacuoles in the cytoplasm of their hosts [44].

Electron microscopic investigations of sapropelic ciliates
(those living in anaerobic sediments rich in decaying plant
material) revealed the absence of mitochondria and the presence
of microbodies. In Metopus striatus, a Gram-positive rod-
shaped bacterium was regularly found to be in close association
with a microbody consisting of a granular matrix surrounded
by a membrane [59].
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Endosymbiotic bacteria are also very common in Euplotes,
a ciliate genus that comprises both freshwater and marine
species. All except one of the bacterial symbionts of Euplotes
are confined to the cytoplasm. It appears that most of the
Euplotes symbionts cannot grow outside their hosts [55]. So
far, only one of the symbionts has been given a binomial name
Polynucleobacter necessarius [39]. They are slightly curved
rods (about 0.3 µm x 2.5–7.5 µm). The symbionts are
individually contained in vesicles, to which ribosomes are often
attached. If stained with DNA-specific dyes, usually 3 to 9 but
in some cases up to 12, intensely stained and regularly spaced
dots become visible.

Also Coleps hirtus, a ciliate collected from Lake Cisó, when
ruptured, released Chlorella-like algae which did not appear
to be digested and which were not observed either in cultures
or in the water column of the lake [24].

Examples of an ectosymbiotic relationship are the
spirochaetes on Myxotricha, which were found to help their
host move by their coordinated undulation whereas the host’s
flagella functioned only to steer its movement [12]. Different
free-living spirochaetae from microbial mats have been studied
and their morphologies and structures have also been described.
[27, 33, 46].

Prokaryotic symbionts of animals and plants

Besides the many associations found in protists, animals and
plants are also frequently colonized by bacteria. A most
interesting example is Prochloron, which is found in nature as
a symbiont of marine invertebrates (ascidians). Electron
micrographs of thin sections show that Prochloron has an
extensive thylakoid membrane system similar to that observed
in the chloroplast, which contains chlorophyll a and b, but does
not contain phycobilins. Initially, Prochloron was thought to
be the type of organism that led, following endosymbiotic
events, to the green plant chloroplast [18].

Life at the seeps is possible because clams, mussels, and
tube worms that thrive there have established a type of
symbiosis that may be unique in the animal kingdom [7, 10,
13, 17, 60]. Only three bivalve species have been investigated
for mechanisms by which suitable environments for their
bacterial symbionts are maintained: Calyptogena magnifica,
Lucinoma aequizonata, and Solemya reidi.

Calyptogena magnifica is found at hydrothermal vents. These
clams can be frequently observed wedged into cracks in the sea
floor where warm water with sulfide is emitted. A large fraction
of the body weight of the bivalve is formed by blood containing
hemoglobin within erythrocytes for oxygen transport. Since the
bacteria in the gill cells live in close proximity to the environment,
no elaborate transport mechanisms for any other substances
appear to be necessary [60].

Lucinoma aequizonata is collected at a depth close to the
interface of a hypoxic basin with overlying oxygen-rich waters,

where local oxygen concentrations are very low and almost no
sulfide, either bound as metal sulfide or free, is detectable. The
bacteria, however, appear to be sulfur oxidizers because they
accumulate elemental sulfur in high concentrations. In addition,
the clams have no apparent mechanism to concentrate sulfide.
This puzzling situation may be explained by the presence of
pockets of sulfidic mud in the proximity of the animal.
Thiosulfate rather than sulfide may be an energy source for the
bacteria [17].

Solemya reidi is the bivalve that has been best investigated
for the uptake of substances from the environment. So far this
bivalve has been collected only from areas around sewage
outfalls and at the outflow of a paper mill. Similar to the case
of Lucinoma aequizonata, the sulfide is oxidized to thiosulfate
by a sulfide oxidase in the host tissue and then used by the
symbionts [14].

Symbioses in Pogonophora (“tubeworms”) and Vesti-
mentifera are also very similar. In both cases, the bacteria are
housed in a tissue inside the worm’s body. The transport
mechanisms of these animals have been investigated, especially
to discover the way sulfide is carried from the environment into
the worm’s “trophosome”. These animals are unique in that their
hemoglobin is able to bind sulfide. It is not yet understood how
the hemoglobin is triggered to release the sulfide again in the
symbiont containing organ, but it has been shown that sulfide is
released in the presence of symbiotic bacteria [7, 10].

Some marine invertebrates and fish establish mutualistic
relationships with luminescent bacteria. Past studies have
demonstrated that marine luminous bacteria and Vibrio fischeri
in particular, are remarkably successful at adapting to a variety
of ecological niches. At least the four described species form
stable, cooperative associations in specialized organs of marine
squids and fishes [19, 30, 41, 52].

Aphids and Buchnera also have a symbiotic relationship.
Aphids are dependent on Buchnera for normal growth and
reproduction, whereas they supply Buchnera with a constant
intracellular environment (Fig. 2).

One of the most important mutualistic relationships between
microorganisms and plants involves the invasion of the roots
of suitable host plants by nitrogen-fixing bacteria, resulting in
the formation of a nodule within which the bacteria are able to
fix atmospheric nitrogen. Until recently, all nodulating and
nitrogen-fixing bacteria associated to leguminous plants were
placed into a single genus Rhizobium. Now two additional
genera, Azorhyzobium and Bradyrhizobium are recognized.
Azotobacter is a unique member of the group which forms stem
nodules on a tropical leguminous tree (Sesbania rostrata).
Bradyrhizobiumdiffers from Rhizobiumby its slow growth in
culture, in the location of the nod and nif genes, and in its host
specificity range [54].

In nature, microorganisms are not isolated. On the contrary,
they are permanently associated to other organisms by means
of either physical or metabolic relations. Little is known,
however, about the biotic and abiotic factors which make it
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possible for those associations to become established. Methods
used in classical microbiology, such as axenic culture, are a
hindrance to the improvement of our current knowledge of
symbiotic microorganisms. More work in that field and new
methodologies would help to achieve a better knowledge of
both microbial diversity and the role microorganisms play in
the ecosystem.
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