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Summary. Ethanol and endopolygalacturonase (endoPG) are simultaneously produced by the yeast Kluyveromyces marx-
ianus CCEBI 2011. The aim of this study was to determine the optimal combination of seven environmental and nutritional

variables, as well as the influence of each one, with respect to the fermentation process in yeast cultures in which sugarcane

juice was the substrate. Simplex sequential optimization showed that after 15 runs the optimal conditions were: pH, 4.6; tem-

perature, 31ºC; total reducing sugars (TRS), 125 g/l; (NH4)2SO4, 2.48 g/l; (NH4)2HPO4, 2.73 g/l; CaCl2, 0.33 g/l and

MgSO4·7H2O, 0.54 g/l. Under these conditions, the ethanol concentration was 47.6 g/l and endoPG concentration was 9.8 U/ml,

which represented increases of 22% and 10%, respectively, over the concentrations obtained under suboptimal conditions.

Temperature and (NH4)2SO4 supplementation were the most significant factors influencing the co-production process. [Int

Microbiol 2011; 14(1):41-49]

Keywords: Kluyveromyces marxianus · ethanol · polygalacturonase · sugarcane juice · optimization · Simplex method

Introduction

Pectinases comprise several enzymes that promote the natural

degradation of pectins, present in plant cell walls. Pectin is a

complex polymer constituted by a backbone of (1→4)-α-D-

galacturonic acid residues, partially methyl-esterified, which

is responsible for the cohesiveness and integrity of plant tis-

sues [11]. The presence of pectic substances causes problems

in the elaboration of fruit juices, particularly during the clar-

ification and filtration steps. Pectinases are classified into

esterases, which de-esterify the pectin molecule without

altering the degree of polymerization, and depolymerases,

which split the galacturonate backbone. The depolymerizing

enzymes are futher grouped into polygalacturonases (PG),

which cleave glycosidic bonds by hydrolysis, and pectin-

lyases, which break the glycosidic linkages by β-elimination.

Pectin-lyases and PG are sub-classified as endo or exo,

according to whether their mechanism of attack is random or

terminal, respectively [17].

Pectic enzymes are widely used in industry, with applica-

tions such as the extraction and clarification of fruit juices,
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the production of fermentable sugars from plant biomass [6],

oil and pigment extraction, and the processing of textile

fibers [12]. They are also used in formulations of animal feed

[9], contributing to better nutrient assimilation. EndoPG form

an industrially important subgroup of pectinases, because

they promote a rapid decrease in the molecular weight of

pectin and hence in the viscosity of pectin-containing solu-

tions, with minimum release of reducing sugars.

Currently, one of the main sources of pectic enzymes for

industrial use is the mold Aspergillus niger. Commercial

preparations consist of a mixture of different pectic enzymes

(endo- and exo-PG, pectin lyases, and pectin esterases) but

also enzymes with undesirable side effects [9,24,37].

Accordingly, new sources of pectic enzymes have been eval-

uated. In this regard, some ascomycetous yeasts, such as

Saccharomyces cerevisiae and Kluyveromyces marxianus,

which only produce endoPG, provide an interesting alterna-

tive [7]. However, the relatively low yield of these enzymes

in wild-type strains of these yeasts represents a drawback to

their industrial production and has spurred the cloning and

expression of the respective genes from S. cerevisiae [9].

In a previous work, we showed that during alcoholic fer-

mentation by K. marxianus CCEBI 2011, endoPG accumu-

late together with ethanol in the culture broth [34], which

contributes favorably to the global economy of the bio-

process. Thus, it was of interest to explore the substrates and

fermentation conditions allowing optimization of the

process. Knowledge of yeast growth under oxic conditions is

important to establish the optimal conditions for the propaga-

tion of these microorganisms and allowing high biomass

yield and cell viability to be reached in a short time, thus sat-

isfying industrial production requirements.

Alcohol production in Cuba is based on sugarcane

molasses as the fermentation substrate. However, the black

color of molasses results in difficulties in the recuperation or

use of other fermentation products, such as endoPG, which can-

not be distilled. Therefore, an alternative and renewable carbon

source is required, among which sugarcane juice seems to be

the most promising, based on its light yellow color and 12–17%

total sugars, of which 90% is sucrose and 10% is glucose plus

fructose [36]. Moreover, sugarcane juice contains organic nutri-

ents and minerals, both in amounts suitable for ethanol produc-

tion by fermentation [25,27]. In the present work, we used

Simplex sequential optimization to determine the conditions

yielding the optimal co-production of ethanol and endoPG by

K. marxianus CCEBI 2011 from sugarcane juice. The propor-

tional influence of the studied environmental and nutritional

variables on this bioprocess was also established.

Materials and methods

Microorganism and inoculum. Kluyveromyces marxianus CCEBI

2011 strain was obtained from the Industrial Biotechnology Studies Center,

University of Oriente (Santiago de Cuba, Cuba). The yeast culture was kept

on yeast extract-peptone-glucose (YPG) slants at 4ºC and subcultured at

15–21 days intervals. Propagation medium for inocula was formulated as

follows: clarified sugarcane juice, prepared so as to reach a content of total

reducing sugars (TRS) of 20 g/l; (NH4)2SO4, 2 g/l and (NH4)2HPO4, 2 g/l.

A 200-ml conical flask containing 40 ml of this medium was inoculated with

a single loopful of a 24-h yeast culture from YPG plates. The culture was

then incubated at 30ºC in an orbital shaker at 200 rpm for 10 h, after which

the growing culture was transferred (1% v/v) into a 500-ml conical flask

containing 100 ml of propagation medium, and incubated for an additional

8.5 h under the same conditions. This culture was used as the inoculum in

subsequent experiments.

Sugarcane juice and media for alcoholic fermentations.
The sugarcane juice was collected at the “Dos Ríos” sugarcane factory in

Santiago de Cuba, and was clarified and stored at –20ºC. Clarification was

achieved by adding Ca(H2PO4)2 until 300 mg of P2O5  per liter of juice was

reached, followed by heating at 80ºC for 20 min. The solution was then

cooled at room temperature and finally centrifuged at 3000 rpm for 15 min

to remove the sedimented solids. The main characteristics of the clarified

sugarcane juice are shown in Table 1. 

Kinetics of K. marxianus growth in sugarcane juice under
aerobic batch culture. During propagation in a 500-ml conical flask,

aliquots were collected every hour over the first 8 h, and then at 30 min inter-

vals up to 14 h. Biomass was measured spectrophotometrically. The specif-

ic growth rate was calculated by plotting the log of the biomass versus time.

SERRAT ET AL.

Table 1. Some of the main characteristics of the clarified sugarcane juice

used in the culture medium

Characteristics Average measured value

pHa 6.0

Total acidity (% w/w)a,b 0.087

Soluble solids (oBrix)a 22.6

Sucrose (% w/w)a 17.7 

Free reducing sugars (% w/w)a 0.76 

Total reducing sugars (% w/w)a 19.41

Soluble proteins (g/l) 0.80

Mg (% w/v)c 0.23

Ca (% w/v)c 0.13

Absorbance (620 nm) 0.520

aAnalysis carried out according to ICINAZ (Cuba), 1996.
bAs acetic acid.
cMg and Ca expressed as MgO and CaO, respectively, on the basis of solu-

ble solids.
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Batch alcoholic fermentation. Alcoholic fermentations were per-

formed in 10-ml (98 × 14 mm) tubes containing 2.5 ml of the culture medium

inoculated with ca. 3.2 × 107 cells. The cultures were incubated under static con-

ditions at the temperature set for each experiment until a constant TRS concen-

tration was reached. Fermentations and analyses were carried out in triplicate.

Analytical determinations and endoPG activity assays.
Clarified sugarcane juice was characterized according to the standard meth-

ods used by the Cuban sugar industry. The pH was measured in a Pacitronic

(Germany) pH-meter; total acidity was titrated with 0.1 N NaOH and

expressed as grams of acetic acid in 100 ml of juice; soluble solids were esti-

mated by refractometry and expressed in ºBrix. Sucrose and total and free

reducing sugars were determined at constant volume (75 ml) by means of the

titrimetric Eynon-Lane method. Sucrose inversion, in a previous Eynon-

Lane titration step, was carried out using Walker´s method. In brief, sugar-

cane juice was heated in a steam-bath for 30 min in the presence of 0.5 N

hydrochloric acid and then immediately neutralized with 5 N NaOH. Soluble

protein, magnesium, and calcium contents were also measured. Protein was

estimated using the Folin phenol reagent [26], with bovine serum albumin

(BDH, England) as standard. Metals were quantified by volumetric analysis

from previously acid-mineralized samples. In the cell-free culture broths,

ethanol was determined by the Conway colorimetric method [14], and TRS

were estimated according to the Somogyi-Nelson procedure [31,35]. Acid

hydrolysis according to Walker’s method was performed prior to TRS deter-

mination. Biomass was indirectly measured spectrophotometrically at a

wavelength of 620 nm, with a yeast suspension whose concentration was

gravimetrically measured (as dry weight) as standard.

EndoPG activity was assayed by incubating a mixture of 400 μL of

0.5% (w/v) polygalacturonic acid (sodium salt, from Sigma) in 50 mM of

sodium acetate buffer, pH 5.0, and 100 μL of enzymatic sample in the same

buffer. The enzymatic reaction was carried out at 37ºC for 10 min. EndoPG

activity was estimated based on the increase in reducing power and was

evaluated using the Somogyi method as modified by Nelson [31,35]. One

unit of enzyme activity was defined as the amount of enzyme producing

1 μmol/min of galacturonic acid or equivalent reducing power under these

conditions.

Simplex optimization. The Simplex method was used to maximize

the combined production of ethanol (expressed as volumetric productivity,

in g/l·h) and endoPG (expressed in U/ml). The MultiSimplex A.B. software

(v. 2.1.1; Grabitech, Sweden, 1988) was used for this purpose. Seven envi-

ronmental and nutritional variables with a potentially significant influence

ETHANOL AND ENDOPG CO-PRODUCTION BY K. MARXIANUS 

Table 2. Experimental trials suggested by the Simplex algorithm

Trial [H+] (μM) Temperature (ºC) TRS (g/l) (NH4)2SO4 (g/l) (NH4)2HPO4 (g/l) CaCl2 (g/l) MgSO4·7H2O (g/l)

1 24 40 106.3 2.25 0.75 0.25 0.25

2 24 28 106.3 0.75 2.25 0.75 0.25

3 8.7 40 68.8 0.75 0.75 0.75 0.25

4* 8.7 28 68.8 2.25 2.25 0.25 0.25

5* 8.7 40 106.3 2.25 2.25 0.75 0.75

6 24 28 68.8 2.25 0.75 0.75 0.75

7 24 40 68.8 0.75 2.25 0.25 0.75

8* 8.7 28 106.3 0.75 0.75 0.25 0.75

9 26.2 42 63.4 2.46 2.46 0.82 0.18

10 7.1 42 110.1 1.02 2.52 0.34 0.02

11* 18.4 29 82.5 1.84 1.20 0.61 0.55

12* 24.8 31 125 2.48 2.73 0.33 0.54

13 31.4 28 88.8 2.63 1.02 0.73 0.91

14* 27 26 78.1 2.63 1.45 0.73 0.91

15* 16.3 35 87.5 3.44 1.49 0.32 0.87

RV 16.3 35 87.5 1.50 1.50 0.50 0.50

[H+] Hydrogen ion concentration; RV: Reference values used in the first Simplex design.

Trials 1–8 correspond to the first Simplex run. *Trials included in Simplex vertices after 15 runs are marked with asterisks. 
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on ethanol and endoPG production were taken into account. These variables,

their reference values, and the experimental trials suggested by the Simplex

algorithm are given in Table 2. Reference values were established on the

basis of earlier work [34]. The algorithm settings were: reflection coeffi-

cient, 1; negative and positive contraction, –0.5 and 0.5, respectively, and

expansion coefficient, 2. The limit values of the response values set to the

calculus of the joint response by Multisimplex software were: PG activity,

0 and 10 U/ml; ethanol productivity, 0 and 2 g/l·h. Both cases were consid-

ered to have the same level of importance.

Statistical analysis. Experimental data were analyzed by using multi-

ple linear regression to determine the weight of influence of the evaluated

environmental and nutritional factors on ethanol and PG production. A 5%

level was defined as significant. The program Statgraphics Plus 3.1

(Statistical Graphics Rockville, MD, USA) was used for this purpose.

Results and Discussion 

Growth kinetics of K. marxianus in sugarcane
juice under oxic conditions. Kluyveromyces marxi-
anus CCEBI 2011 cultured under oxic conditions in sugar-

cane-juice-based medium initially entered a short lag phase

of approximately 2 h, followed by an exponential phase until

7 h,  and then a progressive decrease in growth (7–15 h), dur-

ing which there were only small variations in the amount of

biomass.

The maximum specific growth rate (μmax) estimated dur-

ing exponential phase was 0.71 ± 0.06 h–1. This μmax value is

higher than other reported values for K. marxianus strains

growing aerobically. Banat et al. [5] reported a value of

0.58–0.63 h–1, and more recently Fonseca et al. [19] and

Almeida et al. [1] quoted values of 0.56 h–1. In these cases,

glucose was the only carbon source.

The long deceleration phase, observed here after 7 h, was

probably related to nutritional limitations. Sugarcane juice

contains negligible amounts of vitamins [30] and low levels

of potassium, phosphorous, and magnesium [16]. The yeast

strain used in this study requires biotin for growth [Serrat M

(2003) Ph.D. thesis, University of Oriente, Santiago de Cuba,

Cuba], and limiting amounts of this micronutrient may

SERRAT ET AL.
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Fig. 1. Behavior of ethanol productivity (circles), PG activity

(squares), and joint response measure (triangles) during

Simplex optimization. (A) First Simplex. (B) Sequential opti-

mization, in which the F “trial” shows the best result of each

response variable among eight initial trials corresponding to

the first Simplex.
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account for the results obtained. Da Silva [15] has reported

that other microorganisms, such as Escherichia coli and

Klebsiella oxytoca, are unable to grow in sugarcane juice

unless it is supplemented with yeast extract, as a source of

vitamins.

The biomass yield obtained under these conditions was

0.23 g/g sugar, which is low for aerobic growth when carbo-

hydrates serve as carbon sources. In addition to the above-

mentioned nutritional imbalance in sugarcane juice, the ener-

getic cost of sucrose hydrolysis and subsequent uptake by the

yeast cells should be considered. Sucrose is rarely found in

coffee beans, the natural environment of K. marxianus [33].

In view of the characteristics of aerobic growth in sugar-

cane juice, we decided to use a culture of 8.5 h as the inocu-

lum in the alcoholic fermentation experiments. This time

point corresponded to the end of the exponential phase and

the beginning of the deceleration phase, when biomass con-

centration was ca. 1.67 g/l, with a cellular concentration of

approximately 1.3 × 108 cell/ml. Therefore, despite the small

size of this inoculum, an optimal physiologic state and high

cell viability were achieved.

Optimizing the co-production of ethanol and
endoPG by K. marxianus in sugarcane juice.
Optimization of ethanol and PG concomitant production is a

complex task, since the conditions that increase the forma-

tion of one product reduce the formation of the other, as

observed in trials 2 and 8 (high PG activities) and 1 and 5

(high ethanol productivities) (Fig. 1A). When the Simplex

method was adjusted to experimental conditions in which a

compromise situation would be reached, acceptable high lev-

els of both responses, and thus a maximum combined

response, were obtained. By run number 11 and the follow-

ing trials, the membership function (integrated response)

began to show similar values (Fig. 1B), suggesting that the

optimization process had arrived at a region where the

response could not be further improved. Hence, the experi-

ment was stopped at this point. 

Table 3 shows the main fermentation efficiency indicators

reached in the optimum region, corresponding to trial 12.

Under these optimized conditions, the ethanol concentration

was 47.6 g/l, which represents an increase of 22% compared

to the concentration obtained in a previous study under sub-

optimal conditions [34]. Productivity was 0.39 g/l·h, lower

than the recommended values for industrial ethanol produc-

tion, which range from 1 to 3 g/l·h [13]. This was a direct

consequence of the small size of the starter culture utilized in

these experiments, which was 0.167 g/l. With a still low, but

reasonable starting cell concentration of 1 g/l, a five-fold

increase in ethanol productivity (assuming a lineal relation)

could be expected. Note that to obtain short-time fermenta-

tions, inoculum sizes of 30–40 g/l are necessary [23].

Comparable values were obtained by Hack and Marchant

[22] under similar fermentative conditions. Using the K. marx-
ianus strain IMB3 in molasses at 45ºC, they obtained a final

ethanol concentration of 40 g/l. However, Limtong et al. [25]

achieved a productivity value of 1.45 g/l·h and a final ethanol

concentration of 87 g/l using K. marxianus strain DMKU

3-1042 cultured at 37ºC in sugarcane juice in a medium con-

taining 22% total sugars.

The resulting biomass yield in our study was lower (0.02 g

biomass/g sugar) than the typical values (0.03–0.05 g bio-

mass/g sugar) reported for alcoholic fermentation conducted

by yeasts [4,21,34]. The low biomass accounted for the low

volumetric productivity of ethanol. As pointed out, the lack

of an essential nutrient (vitamins, metal ions) might account

for the lower yeast growth rate [2]. Another factor may have

involved the influence of starvation on the cAMP/PKA path-

way, which controls vegetative growth in yeast [20]. These

data suggest that larger inocula should be used in order to

achieve the necessary process productivity. Ozmihci and

Kargi [32] reached similar conclusions in a study of batch

ethanol fermentation of cheese-whey powder by K. marxianus.
Under optimal conditions with concomitant production of

ethanol and endoPG, the enzyme activity in the culture broth

was 9.8 U/ml (Table 3), almost 10% higher than the values

reported for this same strain in beet molasses [34]. The opti-

ETHANOL AND ENDOPG CO-PRODUCTION BY K. MARXIANUS 

Table 3. Fermentation efficiency indicators under optimized conditions

Variable Valuea

Biomass yield 0.020 ± 0.001

Ethanol (g/l) 47.60 ± 1.21

Qvol ethanol (g/l·h) 0.390 ± 0.009

Fermentation efficiency (%)b 82.5 ± 2.1

PG activity (U/ml) 9.8 ± 1.0

Qvol PG (U/ml·h) 0.080 ± 0.01

Specific PG production (U/mg) 5.54 ± 1.13

Qvol, volumetric productivity.
aAverage ± standard deviation.
bExpressed as percent of the maximum theoretical yield of ethanol from

glucose.
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mal values of pH (4.6) and temperature (31ºC) determined in

the present study are similar to others reported in the litera-

ture for PG production by K. wickerhamii [28] and K. marx-
ianus [10].

Comparison of the results obtained here with those from

a previous study [34] suggests that an increase in TRS level

(from 100 to 125 g/l), supplementation with nitrogen and

nitrogen-phosphorus sources (2.48 g/l (NH4)2SO4 and 2.73 g/l

(NH4)2HPO4), as well as divalent cations Ca2+ and Mg2+ (0.33

and 0.54 g/l, respectively) would positively affect the co-pro-

duction of ethanol and endoPG by K. marxianus CCEBI 2011.

Influence of environmental and nutritional
factors on ethanol and PG production. Once the

optimal region where ethanol and PG levels achieve the

desired values has been determined, it is important to estab-

Fig. 2. Parity plots showing the distribution of experi-

mental vs. predicted values of (A) ethanol productivity,

(B) PG activity, and (C) integrated response.In
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lish the influence of the different evaluated factors on the

responses of interest, either individually or combined (com-

promise situation). Therefore, a multiple linear regression

analysis was carried out that included all experimental trials

(Table 4). In all cases, acceptable fits were obtained with

R2 > 0.7, and a random behavior of residuals vs. predicted val-

ues (data not shown). Parity plots showed a satisfactory corre-

lation between observed and predicted values, and most of the

points were found to cluster around the diagonal line (Fig. 2).

Temperature and (NH)4SO4 supplementation significantly

influenced (P < 0.05) fermentation, although the latter nutri-

ent was not significant to PG production. The influence of

temperature was complex, since higher temperatures

increased ethanol productivity but with a concomitant

decrease in accumulated PG activity. Temperature, to a cer-

tain extent, causes an increase in the yeast growth rate and

thus in the ethanol production rate, because ethanol is a by-

product associated with energy metabolism. This fact is in

agreement with our results in which both the thermotolerance

of the strain [33] as well as the maximum temperature (42ºC)

were taken into account. The negative effect of temperature

on PG production was reported in a previous study of PG

synthesis at 30ºC and 40ºC [Serrat M (2003) Ph.D. thesis].

As noted above, satisfactory yeast growth in sugarcane

juice required supplementation of the medium with nitrogen

and other nutrients. Thus, a favorable influence of (NH)4SO4

addition on the volumetric productivity of ethanol was to be

expected. The non-significant influence (P > 0.05) of

(NH)4HPO4 on ethanol production suggests a probable nega-

tive effect of the phosphate anion (e.g., on calcium and mag-

nesium availability), which could have masked the positive

action of the ammonium ion.

The influence of nutritional factors on PG synthesis in K. mar-
xianus is also complex, because production of these enzymes

is partially growth-associated, and maximum accumulation

occurs as the cultures approach stationary phase [34]. Thus,

the establishment of possible correlations with the initial cul-

ture composition is difficult and might explain the absence of

significant relations between nutritional variables and

endoPG production. In addition, the long fermentation times

needed, due to the small size of the inocula, could have inter-

fered with the PG values measured, by allowing enzyme

degradation or inactivation. This conclusion is consistent

with studies carried out on yeast pectinolytic enzymes, in

which activity was shown to decrease with increasing culture

time [8,18,29].

ETHANOL AND ENDOPG CO-PRODUCTION BY K. MARXIANUS 

Table 4. Coefficients and significance probability of the multiple linear regression models

Ethanol productivity PG activity Integrated response

Factor Estimateda P-value Estimateda P-value Estimateda P-value

Constant 0.256 ± 0.018 0.000 6.86 ± 0.80 0.000 0.257 ± 0.016 0.000

[H+] –0.009 ± 0.017 0.628 –0.83 ± 0.77 0.316 –0.024 ± 0.016 0.161

Temperature 0.042 ± 0.017 0.038* –3.54 ± 0.80 0.003* –0.048 ± 0.016 0.021*

TRS 0.028 ± 0.017 0.136 0.91 ± 0.75 0.265 0.026 ± 0.015 0.134

(NH4)2SO4 0.041 ± 0.015 0.026* –0.11 ± 0.71 0.877 0.043 ± 0.014 0.019*

(NH4)2HPO4 0.023 ± 0.017 0.210 0.62 ± 0.80 0.466 0.024 ± 0.016 0.191

CaCl2 0.020 ± 0.019 0.322 0.56 ± 0.84 0.525 0.027 ± 0.017 0.152

MgSO4·7H2O – – –0.25 ± 0.75 0.752 –0.002 ± 0.015 0.886

R2 = 0.719 R2 = 0.775 R2 = 0.798

R2, coefficient of determination.
aEstimated coefficients ± standard error.

*Factors with statistically significant influence (P < 0.05).
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Note that, in this study, neither TRS concentration nor pH

significantly influenced ethanol or PG production. The assayed

range of TRS (63–125 g/l) might have masked the occurrence

of a possible non-linear effect. In addition, the relatively narrow

range of hydrogen ion concentrations (7.1–31.4 μM, equivalent

to 0.6 pH units) might have not been enough to allow apprecia-

ble changes in the measured responses. In view of the negligi-

ble effects of divalent cations (Ca2+ and Mg2+) and the nitrogen-

phosphorous supplement in the form of (NH4)2HPO4, these

compounds might be easily suppressed in formulations of sug-

arcane-juice-based media.

The present work shows that the Simplex method facili-

tates the establishment—with just a few experiments—of the

most favorable fermentation conditions for the simultaneous

production of endoPG and ethanol from sugarcane juice by

K. marxianus CCEBI 2011.
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