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Summary. The variability of bacterial community composition and diversity was studied by comparative analysis of five
16S rRNA gene clone libraries from deep-sea sediments (water column depth: 4000 m) of the Northeastern Pacific Ocean and
Eastern Mediterranean Sea. This is the first comparison of the bacterial communities living in these deep-sea ecosystems. The
estimated chlorophyll a, organic carbon, and C/N ratio provided evidence of significant differences in the trophic state of the
sediments between the Northeastern Pacific Ocean and the much warmer Eastern Mediterranean Sea. A diverse range of 16S
rRNA gene phylotypes was found in the sediments of both regions. These were represented by 11 different taxonomic groups,
with Gammaproteobacteria predominating in the Northeastern Pacific Ocean sediments and Acidobacteria in the Eastern
Mediterranean microbial community. In addition, several 16S rRNA gene phylotypes only distantly related to any of the pre-
viously identified sequences (non-affiliated rRNA genes) represented a significant fraction of the total sequences. The poten-
tial diversity at the two sites differs but remains largely unexplored and remains of continuing scientific interest. [Int Micro-
biol 2010; 13(3):143-150]

Keywords: marine bacterial diversity · deep-sea sediments · 16S rRNA genes · Northeastern Pacific Ocean · Eastern
Mediterranean Sea

Introduction

Deep-sea sediments (water depth ≥1000 m) cover about 95%
of the total oceanic bottom and 67% of the Earth’s surface,

thus representing one of the planet’s largest ecosystems [46].
For years, the deep-sea floor was considered to be a very sta-
ble and biologically inert environment due to its high hydro-
static pressure and the absence of sunlight. However, recent
technological developments and monitoring methods have
shown that deep-sea ecosystems constitute a dynamic envi-
ronment linked to upper water column processes through the
influx of organic matter [18,37,43]. Moreover, it has also
become clear that the microbial processes occurring along
the deep-sea floor are essential in sustaining oceanic primary
and secondary production. Host microbial cells account for
most of the benthic biomass, with an enormous number of
undiscovered species (0.3–8.3 × 106) estimated to be living
in the deep-sea floor [11]. 
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Despite the vast contribution of microbial biomass to the
total benthic biomass of the deep ocean floor and its indis-
pensable role in biogeochemical cycling, the cultivated
strains constitute only a small fraction of the total biodiversi-
ty [1,44]. Molecular methods targeting 16S rRNA genes have
revealed that only a very small fraction of the diversity of the
microbial world is known, as most of it is hidden in the pool
of yet uncultured bacteria [1,16]. Similarly, with the excep-
tion of a few functionally defined bacterial groups (metha-
nogens, methanotrophs, sulfate-reducing bacteria), our
knowledge regarding the ecology and physiology of sedi-
ment bacteria is fragmentary due to the lack of extensive bio-
geographical studies of sediment bacterial populations [3].

The goal of the present study was therefore to shed light
on the nature of these populations by using molecular-based
methods to analyze the microbial components in the deep-sea
sediments (water-column depth: 4000 m) of two contrasting
environments, the oligotrophic, warm Eastern Mediterranean
Sea and the eutrophic, cold Northeastern (NE) Pacific Ocean
off the Californian coast. The deep eastern basin of the
Mediterranean Sea is one of the most oligotrophic regions in
the world [17,19], characterized by a complex hydrographic
and geomorphologic regime [26]. Despite its depth (average:
2000 m), its deep water mass temperature is at least 13.5ºC.
Hence, the Eastern Mediterranean Sea constitutes a model
for a deep, relatively warm, and highly oligotrophic bathy-
pelagic habitat [36]. By contrast, in the NE Pacific Ocean,
surface nutrient levels, chlorophyll concentrations, and bio-
logical productivity are high [38], comprising a eutrophic but
relatively cold environment.

In the following, we present a comparative phylogenetic
analysis of the microbial community composition and biodi-
versity dwelling in the aforementioned environments, by
means of 16S rRNA gene clone libraries. If the trophic state
or/and the temperature play a key role in microbial commu-
nity composition, then the eutrophic and cold environment of
the NE Pacific Ocean should support bacterial assemblages
different from those in the oligotrophic and warm
Mediterranean Sea. To our knowledge, this is the first com-
parison of bacterial communities living in drastically differ-
ent deep-sea ecosystems.

Materials and methods

Sampling sites and environmental variables. Four sampling
sites at the NE Pacific Ocean (station M, Alvin samples) and one at the Eastern
Mediterranean Sea (station KM3, South Ionian Sea; Fig. 1 and Table 1) were
selected, each at a water column depth of approximately 4000 m. Un-
disturbed Pacific sediment samples were collected by means of the research
submersible Alvin (Woods Hole Oceanographic Institution, Woods Hole,
MA, USA) in August 2006 (Fig. 1A). Piston cores manipulated by the arms
of the submersible allowed the collection of undisturbed sediment samples
from four microenvironments in the NE Pacific Ocean (station M). The sed-
iment core Alvin24 was collected on a bioturbation mound, whereas the core
Alvin25, used as a control, was collected away from the observed mound.
Similarly, core Alvin28 was collected near a detrital kelp holdfast, whereas
core Alvin29 was used as a control. A Bowers and Connelly multiple-corer
(8 cores, internal diameter 9.0 cm) was used to collect cores with an undis-
turbed sediment-water interface and with overlying bottom water from the
South Ionian Sea in May 2007, on board the R/V Aegaeo of the Hellenic
Centre for Marine Research (Fig. 1B). Three independent deployments were
made in the South Ionian sampling site (station KM3). Mixed surface sedi-
ment samples (0–1 cm) from each of the sampling sites (one Ionian and four
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Table 1. Geochemical characteristics of the deep-sea sediments collected from the Northeastern Pacific Ocean (station M) and Eastern Mediterranean Sea 

KM3 Alvin24 Alvin25 Alvin28 Alvin29

Station character Deep-sea basin Away from bioturbation mound On bioturbation mound Near a detrital kelp holdfast Away from detrital kelp holdfast

Depth (m) 4015 4100 4100 4100 4100 

Temperature (°C) 14.00 1.48 1.48 1.48 1.48

Chl a (μg/g) 0.12 0.94 0.97 0.90 0.83

CPE (μg/g) 1.07 7.75 7.38 7.46 7.04

OC (%) 0.82 1.53 1.69 1.66 1.53

C/N 10.45 9.11 6.60 6.10 6.87

Sequenced clones 105 73 65 87 81

OTUs 82 55 43 64 60

Coverage (%) 43.44 26.31 54.68 44.79 43.51

Chao-1 188.78 209.08 78.64 142.89 137.88

Chl a: chlorophyll a; CPE: chloroplastic pigment equivalents; OC (%): organic carbon content; C/N: organic carbon to nitrogen ratio.



145INT. MICROBIOL. Vol.13, 2010

Pacific oxic sediments) were stored frozen in sterile vials for subsequent
analysis in the laboratory. Chloroplastic pigments (chlorophyll a and
phaeopigments) and total organic carbon and nitrogen concentrations were
estimated using a Turner TD-700 fluorometer [23] and a Perkin Elmer CHN
2400 analyzer [13], respectively. Chloroplastic pigment equivalents (CPE)
are defined as the sum of chlorophyll a and phaeopigments. 

16S rRNA gene clone library. Five 16S rRNA gene clone libraries
were constructed from the surface sediments in order to study benthic bac-
terial diversity and community composition. Total sedimentary DNA
(approximately 0.5 g) was extracted directly from the deep-sea samples
using the FastDNA-SPIN Kit for Soil (Q-Biogene, Carlsbad, CA, USA) fol-
lowing the manufacturer’s instructions. The concentration of DNA in the
extracts was measured using the spectrophotometer ND-1000 (NanoDrop,
Wilmington, DE, USA). Bacterial 16S rRNA genes were amplified by poly-
merase chain reaction (PCR) with the universal bacterial primers 27f (modified
to match also Planctomycetales, 5′-AGRGTTTGATCMTGGCTCAG-3′ [45])
and 1492r (5′-GGYTACCTTGTTACGACTT-3′ [20]). For each sample,
eight replicate PCRs of 20 μl were amplified in a Perkin-Elmer cycler, with
an initial denaturation at 94°C for 3 min followed by 30 cycles of 1 min at
94°C, 1 min annealing at 55°C, 2 min primer extension at 72°C, and a final
extension at 72°C for 7 min. In the case of KM3 samples, 16S rRNA gene
amplification was possible at a PCR annealing temperature of 50°C. Each
PCR tube contained 1–4 ng of target DNA, PCR buffer (10 mM Tris-HCl,
pH 9, 50 mM KCl, 0.1% Triton X-100, and 2 mM MgCl2), 100 nM of each
primer, 200 μM of each dNTP, and 0.25 U Taq DNA polymerase (Invitrogen,
Carlsbad, CA, USA). All PCRs were then pooled and precipitated in a cen-
trifugal vacuum evaporator (SpeedVac; Heraeus Instruments, Hanau,
Germany) followed by gel purification using the Quiaquick PCR purifica-
tion kit (Quiagen, Valencia, CA, USA). For each sample, 10 ng of PCR prod-
uct was cloned into the pCR 4-TOPO vector and transformed into chemical-
ly competent cells of E. coli One shot TOP10 cells using the TOPO TA
cloning kit (version M), as recommended by the manufacturer (Invitrogen).
The bacterial clones were collected and transferred to 96 deep-well plates

and incubated for 24 h at 37°C in Luria-Bertani (LB) medium containing 25
mg kanamycin/ml. Aliquots of the individual clones were either kept at
–80°C in 7% dimethyl sulfoxide or processed for plasmid DNA extraction
using 800-μl Unifilter microplates (Whatman). The extracts were further
used for sequencing.

Phylogenetic analysis, species richness and statistical
analysis. A total of 472 clones were successfully sequenced with either
the vector primer M13f-20 (5′-GTAAAACGACGGCCAG-3′) or the vector
primer M13r (5′-CAGGAAACAGCTATGAC-3′, Invitrogen) on an ABI
3700 96-capillary sequencer (Applied Biosystems) using the BigDye termi-
nator kit (v.3.1, Applied Biosystems). This procedure generated high-quali-
ty reads of 450–780 bases. Three sequences were identified as likely
chimeric products according to Chimera Check, included in Ribosomal
Database Project II (Michigan State University, East Lansing, MI, USA),
and were omitted from the phylogenetic analysis. The remaining sequences
were compared to GenBank entries using BLAST (Basic Local Alignment
Search Tool, National Center for Biotechnology Information, Bethesda, MD,
USA) in order to obtain preliminary phylogenetic affiliations of the clones.
Additional sequences excluded from further analysis were 55 clones related
to eukaryotic organelles and clone vector sequences, and three clones not
having any relation to the GenBank reference clones. The sequences of the
remaining 411 clones were imported to the ARB software (version 2.5b,
Technical University of Munich, Germany [24]) and aligned using the inte-
grated alignment tool and the fast alignment option followed by manual
alignment of the sequences to closely related sequences in the ARB data-
base. Similarity matrices among the clone sequences were calculated to
identify operational taxonomic units (OTUs, minimum sequence similarity
of 98%), which were further used to estimate species richness (Chao-1)
using the web-based rarefaction calculator software [http://www2.
biology.ualberta.ca./jbrzusto/rarefact.php] [5]. Finally, 304 OTUs were iden-
tified and subsequently used to construct phylogenetic trees by applying the
maximum parsimony method. The robustness of tree topologies was con-
firmed by maximum parsimony analysis [24] with 100 bootstrap replica-
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Fig. 1. Map showing the positions of the sampling sites in (A) the Northeastern Pacific Ocean (station M) and (B) the Eastern Mediterranean Sea (station KM3).
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tions; values <50 were removed. All 304 partial 16S rRNA gene sequences
generated in the present study were deposited in GenBank under accession
numbers FJ197343–FJ197646. Novel clusters of uncultured sediment bacte-
ria were defined as monophyletic groups of 16S rRNA gene sequences with
a minimum sequence similarity of 98%. Additional criteria were that the
cluster must contain sequences from a minimum of two libraries.
Multivariable analysis using Euclidean distance, as integrated in the
PRIMER 6.1.5 software (Plymouth Marine Laboratory, UK), was carried out
to compare bacterial community composition among the environmental
samples, at the level of large taxonomic groups.

Analysis of clone library significance testing. To determine
the significance of differences between two clone libraries (e.g., X and Y),
differences (ΔC) between homologous CX(D) and heterologous CXY(D) cov-
erage curves were calculated using the statistical tool LIBSHUFF [http://lib-
shuff.mib.uga.edu/] [39]. Genetic distance matrices among the clone
libraries were calculated in the ARB software and further imported to the
LIBSHUFF program (perl environment). If the clone libraries are similar,
then the coverage curves CX(D) and CXY(D) should also be similar. For each
pairwise comparison, if the lower of the two critical P-values (P)
returned by LIBSHUFF was ≤0.025, then the two libraries were consid-
ered significantly different in community composition, with a confidence
of 95% (P = 0.05).

Results

Geochemical sediment characteristics. Chloro-
plastic pigments, organic carbon, and carbon-to-nitrogen
ratio (C/N) are useful indicators of the amount of food avail-
able to sediment dwellers. According to the results of the
chemical analysis (Table 1), the Alvin samples contained
greater quantities of chlorophyll a (0.83–0.97 μg/g), chloro-
plastic pigment equivalents (7.04–7.75 μg/g), and organic car-
bon content (1.53–1.69%) than the Eastern Mediterranean sed-
iments, where the corresponding values were only 0.12 μg/g,
1.07 μg/g, and 0.82% respectively. Amongst the Alvin sam-
ples, slightly lower concentrations of organic carbon were
determined for the control sampling sites. As for the ratio C/N,
the KM3 sediment had the highest value (10.45), paralleled
only by the Alvin24 sample (9.11). In the rest of the Alvin sam-
ples, the C/N ratios were lower, ranging from 6.1 to 6.87. 

Diversity of bacterial phylotypes. Species richness
was estimated by means of rarefaction analysis, with the rare-
faction curve constructed (Fig. 2) such that it illustrated the
bacterial diversity of the KM3 and Alvin deep-sea microen-
vironments. Among the 411 clones that were compared, 82
different OTUs were identified among the 105 screened
clones from the KM3 clone library, whereas among the Alvin
samples 55 of 73, 43 of 65, 64 of 87, and 60 of 81, from the
Alvin24, Alvin25, Alvin28, and Alvin29 clone libraries,
respectively, were identified. Apparently, all of the 16S
rRNA gene libraries were highly diverse, while their curves
diverged only marginally from the reference curve. 

Taxonomic groups and phylogenetic analysis.
Our comparative phylogenetic analysis among the five clone
libraries was based on 304 unique 16S rRNA gene phylo-
types. Phylogenetic analysis (Fig. 3 and Fig. S1) led to the
classification of the majority of sequences (252 phylotypes)
in eleven widespread taxonomic groups: Acidobacteria, Acti-
nobacteria, Planctomycetes, Alphaproteobacteria, Beta-
proteobacteria, Gammaproteobacteria, Deltaproteobacteria,
Nitrospirae, Chloroflexi, Verrucomicrobia and Bacteroidetes.
From the remaining 52 phylotypes, five were classified as
cluster1 and cluster2, one phylotype was affiliated with the
candidate division OP11, but the majority (40 phylotypes)
did not fall into any known taxonomic group.

Regarding the NE Pacific Ocean microenvironments (222
phylotypes), the differences occurring at the level of large
taxonomic groups were small. In general, Gammapro-
teobacteria constituted the dominant class (23.3%), followed
by Deltaproteobacteria (13.6%) and Actinobacteria (12.1%).
Additionally retrieved bacterial phylotypes were those affili-
ated with the Alphaproteobacteria, Betaproteobacteria,
Acidobacteria, Bacteroidetes, Verrucomicrobia, Nitrospirae,
Chloroflexi, cluster2, candidate division OP11, and a signif-
icant percentage of phylotypes not affiliated with any known
taxonomic group (10.3%).

The KM3 clone library (82 phylotypes) included bacterial
phylotypes sorted in 11 phylogenetic groups: Acidobacteria,
Actinobacteria, Planctomycetes, Deltaproteobacteria, Alpha-
proteobacteria, Betaproteobacteria, Gammaproteobacteria,
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Fig. 2. Rarefaction analysis of 16S rRNA gene sequence heterogeneity in
clone libraries from the sediment samples. Total numbers of screened clones
are plotted against unique operational taxonomic units (OTUs).
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Nitrospirae, Chloroflexi, Verrucomicrobia, and Bacteroide-
tes. Note that the 16S rRNA gene sequences not affiliated
with any known taxonomic group were the most abundant
(24.1%). Acidobacteria was the most prevalent known phy-
lum (17.7%) followed by Gammaproteobacteria and
Actinobacteria (17.7% and 13.9%, respectively).

Hierarchical cluster analysis based on the similarity
matrices for bacterial community composition at the phy-
lum/class level revealed differences between the Alvin and
KM3 clone libraries. Specifically, although Acidobacteria
and Gammaproteobacteria were the most prevalent phyloge-
netic groups in the sediments of both areas, the KM3 clone
library had the highest percentage of 16S rRNA gene
sequences not clustered into any known taxonomic group
(Fig. 3 and Fig. S1).

Clone library significance testing. To determine
the significance of differences between the clone libraries
based on sequence similarity, LIBSHUFF analysis was
applied (Fig. S2). A comparison of all libraries revealed that
bacterial community composition differed significantly only
between sediments Alvin25 and Alvin28 (P = 0.002, Fig. S2).
By contrast, there were no noticeable discrepancies regarding
bacterial community composition between the Mediter-
ranean sediment KM3 and the Pacific sediments Alvin24
(P = 0.439), Alvin25 (P = 0.038), Alvin28 (P = 0.256), and
Alvin29 (P = 0.161, Fig. S2). The coverage curves for pairs
of clone libraries showed differences only at high levels of
genetic distance (D < 0.2, Fig. S2); these differences were
more obvious for the significantly different sediments
(Alvin25 and Alvin28, Fig. S2A).  
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Fig. 3. (A) Column chart denoting the bac-
terial community composition of the
Northeastern Pacific Ocean and Eastern
Mediterranean sediments. (B) Cluster
analysis of bacterial community composi-
tion at the level of large taxonomic groups
from the different surface sediment sam-
ples. Scale indicates Euclidean distance. 
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Discussion

Deep-sea sediments have been characterized as the final
depository for the accumulation of autochthonous and
allochthonous organic matter (e.g., [7,12]), with the levels of
chlorophyll a and CPE widely used in assessing the contribu-
tion of phytodetritus to the sediments. Based on these levels,
areas with a variable food input or trophic state can be
defined. For example, in deep-sea oligotrophic ecosystems,
chlorophyll a concentrations are < 0.06 μg/g in the central
equatorial Pacific [40] and average 0.15 μg/g in the Indian
sector of the Southern Ocean and a maximum of 0.15 μg/g at
the permanently open-ocean zone [35]. At NE Pacific Ocean
sampling sites, chlorophyll a values were higher (0.83–0.94
μg/g, Table 1) than in the aforementioned deep-sea ecosys-
tems and were comparable to the values typical of
mesotrophic environments. The sampled area of the NE Paci-
fic Ocean lies below the California current, whose surface
water chlorophyll concentrations show large seasonal varia-
tions. However, previous measurements from the same area
were not indicative of regular seasonal fluctuations in sedi-
ment chlorophyll a and phaeopigments between 1992 and
1996 [6]; rather, the values were comparable to those of the
present study. In Eastern Mediterranean sediments, the
chlorophyll a value (0.12 μg/g, Table 1) was in accordance
with previous measurements from the South Ionian Sea sed-
iments (0.05 μg/g, water depth: 2790 m; [27,28]), typical for
oligotrophic environments. The organic carbon content of
NE Pacific sediments, as determined in this study, was
approximately 1.53–1.69%, comparable to values reported in
an 8-year time-series study (for the period 1990–1998) in the
same area (ca. 1.5–2.0% [42]). At station KM3, however, the
organic carbon content was much lower (0.82%) than in NE
Pacific sediments. Our data confirm the organic carbon values
previously documented for the Eastern Mediterranean Sea
sediments, which ranged from 0.37% to 1.63% [27,31,33].

Overall, because of the negligible photosynthetic rates,
the availability of deep-sea organic matter regulates benthic
productivity and biomass [18]. Previous time-series monitor-
ing at the NE Pacific (station M) sampling site revealed also
a coupling between the maximum flux of particulate matter
entering the benthic boundary layer and the presence of detri-
tal aggregates on the sea floor. In addition, seasonal inputs of
phytodetritus appear to be an important food source for
epibenthic fauna at station M [2,41]. Polymenakou et al. [27]
found that both organic carbon and chlorophyll a are linked
to bacterial community composition in Eastern Medi-
terranean Sea sediments at depths of 30–2860 m. In the pres-
ent study, all 16S rRNA gene clone libraries proved to be

highly diverse. Several 16S rRNA gene phylotypes were
affiliated with bacterial sequences from a wide variety of
environments, such as terrestrial, anoxic habitats, and mud
volcanoes. This high diversity in deep-sea sediments has also
been identified in the Arctic Ocean [34], Antarctica [3], and the
Eastern Mediterranean [28]. In fact, Bowman and McGuaig [3]
reported that the sedimentary biodiversity of the oxic and the
anoxic layers is comparable to that of terrestrial ecosystems.

Bacterial community composition at station M resembled
that of other regions in the Pacific Ocean. In a similar
research effort conducted in deep-sea sediments near Japan
(water column depths: 2339–4031 m), Li et al. [21] retrieved
16S rRNA gene phylotypes that clustered into the Alpha-,
Beta-, Gamma-, Delta-, and Epsilonproteobacteria, Bacte-
roidetes, and Actinobacteria. Furthermore, Gammaproteo-
bacteria were the dominant taxonomic group in a 37-clone
cosmid library constructed from deep-sea sediments (depth:
5274 m) retrieved from the Pacific Nodule Province [47].
Alpha- and Deltaproteobacteria, Actinobacteria, and Fir-
micutes were the other groups retrieved. According to Li et
al. [21], Alpha- and Gammaproteobacteria as well as Bacte-
roidetes are common in deep-sea sediments. In fact,
Gammaproteobacteria seem to be the predominant bacterial
group, as it prevailed over other taxa identified in several
deep-sea investigations (e.g., [3,21,28]).

Deltaproteobacteria was one of the most abundant taxo-
nomic groups defined in NE Pacific sediments. Due to its
common role in regulation of the sulfur cycle, Epsilon-
proteobacteria were also expected; nonetheless, affiliated
phylotypes were not identified, perhaps due to the fact that
they inhabit shallow coastal marine waters and deep
hydrothermal vents [22]. The finding that several phylotypes
from the NE Pacific sampling sites were closely related to
16S rRNA gene sequences previously found in the Eastern
Mediterranean Sea (i.e., phylotypes from the Thermaikos
Gulf, South Ionian Sea, and Cretan Sea [28]) is intriguing.

Based on the phylogenetic analysis of the KM3 16S
rRNA gene clone library, this bacterial community was
apparently dominated by Acidobacteria, Actinobacteria, and
Gammaproteobacteria. Despite the absence of certain phylo-
genetic groups, the results of the analysis were in accordance
with those of a previous study of deep-sea sediments in the
Ionian Sea [28]. Specifically, the 17 16S rRNA gene phylo-
types from the KM3 library had high sequence similarity
(98–99%) to phylotypes obtained from various other sam-
pling sites around the Mediterranean Sea [28]. The domi-
nance of Acidobacteria in the KM3 clone library is consistent
with previous investigations in the Eastern Mediterranean
Sea. This phylum has been reported to be the prevalent one
in sedimentary bacterial communities of the South Ionian Sea
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[28] and in deep-sea sediments from both the submarine
Samaria gorge and the Paximades Channel in the southern
Cretan margin [29]. In general, representatives of
Acidobacteria predominate in a variety of soils, hot springs,
and sediments [10].

Actinobacteria and Gammaproteobacteria were the next
most abundant phylogenetic taxa in the KM3 clone library.
However, a relatively limited number of actinobacterial phy-
lotypes have been found in Eastern Mediterranean sediments
[28]. Actinobacteria form a major or dominant component of
the bacterial populations both at bathyal and abyssal depths
[4]. The 16S rRNA gene sequences not affiliated with any
known bacterial clone comprised the most abundant KM3
group, as their abundance (24.05%) was higher than that of
Acidobacteria. Surprisingly, 16S rRNA gene phylotypes
affiliated with the Firmicutes were not detected in the KM3
sediments, even though this phylum is quite widespread in
the Eastern Mediterranean Sea [28,29] and especially in the
air [30].

The NE Pacific and Eastern Mediterranean ecosystems
have different trophic states and temperature conditions but
the same depth. Nonetheless, LIBSHUFF analysis, which is
based on sequence similarity, did not show substantial differ-
ences in bacterial community composition among the sam-
pling sites. By contrast, cluster analysis, which is based on
the level of large taxonomic groups, identified differences in
the presence or absence of certain minor phyla and in the per-
centages of the phylotypes assigned to each phylogenetic
group. In fact, several Mediterranean and Pacific phylotypes
appeared to be affiliated with each other in the phylogenetic
trees. Note that all sampling sites were located at the same
latitude. Generally, most organisms show latitudinal gradi-
ents in species diversity, with their species richness usually
increasing from the poles towards the equator [15,25].
Although this pattern is poorly understood, the few suggest-
ed mechanisms are based on species-area relationships, pro-
ductivity levels, and the evolutionary history of the ecosys-
tem [15]. Finlay [9] suggested that free-living microbial
species (e.g., protists) do not show biogeographies; instead,
their ubiquity-biogeography transition can be explained by
species size, which ranges from 1 to 10 mm. However,
Pommier et al. [32], by analyzing the bacterioplankton com-
munities from coastal waters at nine world-wide distributed
locations, demonstrated that these tiny communities share
many of the biogeographical and macroecological features of
macroscopic organisms. In particular, the investigated marine
bacterioplankton community had a high degree of endemism
and followed a latitudinal gradient of species richness.
Although biogeographical patterns and the ubiquitous distri-
bution of microbial taxa, as well as the occurrence of endem-

ic bacterial communities, have been widely discussed, most
studies have been restricted to free-living bacterioplankton
communities and microbial eukaryotes (e.g., [9,32]). This
reflects the fact that planktonic communities are well mixed,
as there are few barriers to microbial dispersal [8].
Sediments, on the other hand, are unlikely to support the
ubiquitous dispersal of microorganisms relative to the water
column. Nonetheless, although there is little evidence to sup-
port ubiquitous dispersal in sediments, habitat specificity of
different types of bacteria has been suggested. Recent studies
have shown that water column depth is one of the factors
controlling microbial community composition in sediments
[14,27] regardless of the trophic state of the ecosystem. Our
results confirm this model, since similar bacterial communi-
ties were observed between widely dispersed habitats of dif-
ferent trophic state and temperature conditions.

The present study has provided only a small fraction of
the information that can be obtained by studying benthic
communities. This limitation is due to the low sequence
capacity of the clone library analysis using Sanger-based
technology. State-of-the-art pyrosequencing technology,
which is able to generate thousands of sequences from each
sampling site, would provide greater insight into the magni-
tude of the biodiversity within these highly diverse environ-
ments. However, it is not only the high diversity but also the
significant percentage of non-affiliated bacterial phylotypes
that define these microenvironments as microbial hotspots.
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Supplementary : Figure S2 
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Supplementary material  
Fig S1. Maximum parsimony (MP) 16S rRNA gene trees showing positions of phylotypes 

affiliated with (A) Betagammaproteobacteria, (B) Alphaproteobacteria, (C) Deltaproteobacteria, 

(D) Acidobacteria, (E) Actinobacteria, (F) Planctomycetes, (G) Nitrospirae, Chloroflexi, 

Verrucomicrobia, Bacteroidetes, Clusters 1, and 2, candidate division OP11, and unidentified 

clones from the sediment samples. The closest matching entries in GenBank were also included 

in the tree. The trees are a summary of 100 multiple bootstrapped replicates with MP method and 

the bootstrap values, determined as percentages of the 100 trees inferred by MP method, are 

given for branches with greater than 50% support. The scale bar indicates 10% nucleotide change 

per 16S rRNA gene sequence positions. Sequences from cultured representatives are indicated in 

italics.  

 

Fig S2. Results of selected LIBSHUFF (Singleton et al., 2001) comparisons of clones from (A) 

Alvin25 (X) to Alvin28 (Y), (B) Alvin24 (X) to Alvin25 (Y), (C) Alvin25 (X) to KM3 (Y), (D) 

Alvin24 (X) to KM3 (Y), (E) Alvin29 (X) to KM3 (Y) and (F) Alvin28 (X) to KM3 (Y) clone 

libraries. Homologous (CX) and heterologous (CXY) coverage curves for 16S rRNA gene clones 

are presented. Solid lines indicate (CX – CXY)2 for the original samples at each value of genetic 

distance (D) and broken lines indicate the 950th value (or p = 0.05) of (CX – CXY)2 for the 

randomized samples. 


