Algorithms and cryptographic protocols using elliptic curves Authors Josep M. Miret Biosca Ramiro Moreno Chiral Jordi Pujolàs Boix Magda Valls Marsal Abstract The relevance of elliptic curve cryptography has grown in recent years, and today represents a cornerstone in many industrial standards. Although elliptic curve variants of classical cryptosystems such as RSA exist, the full potential of elliptic curve cryptography is displayed in cryptosystems based on the Discrete Logarithm Problem, such as ElGamal. For these, elliptic curve cryptosystems guarantee the same security levels as their finite field analogues, with the additional advantage of using significantly smaller key sizes. In this report we show the positive properties of elliptic curve cryptosystems, and the requirements a curve must meet to be useful in this context, closely related to the number of points. We survey methods to discard cryptographically uninteresting curves as well as methods to obtain other useful curves from a given one. We then describe some real world applications such as Smart Cards and RFID systems and conclude with a snapshot of recent developments in the field. Downloads Text complet (Català) PDF Published 2008-09-17 Issue 3-4 Section Research reviews License This work is subject, unless the contrary is indicated in the text, the photographs or in other illustrations, to an Attribution —Non-Commercial— No Derivative Works 3.0 Creative Commons License, the full text of which can be consulted at http://creativecommons.org/licenses/by-nc-nd/3.0/. You are free to share, copy, distribute and transmit the work provided that the author is credited and reuse of the material is restricted to non-commercial purposes only and that no derivative works are created from the original material.