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Abstract

Atomic force spectroscopy was used to study the nanome-
chanical response to nanoindentations on the most stable
face (100) of FCC brittle materials such as MgO and alkali
halides. The layered expulsion of material demonstrates that
brittle failure results from the critical stress brought on by
plastic deformation and that plastic deformation consists of
a series of discrete events. Due to the absence of indenta-
tion-induced dislocations, Young’s modulus E can be cor-
rectly estimated from the elastic deformation region using
simple mechanics. A new model is developed taking into ac-
count lateral interactions. Critical shear stress is also evalu-
ated and discussed. As a result of the layered expulsion we
also studied the nanomechanical response of surfaces of
highly-oriented molecular organic thin films (ca. 1 um thick-
ness) because these are Van der Waals layered materials.
The surfaces were again found to deform plastically and
there were discrete discontinuities in the indentation curves,
representing the molecular layers being expelled by the
penetrating tip. Here, the Hertz model is quite good at re-
vealing the role of lateral interactions in the indentation
process. For the quasi-one-dimensional metal tetrathiafulva-
lene tetracyanoquinodimethane (TTF-TCNQ) the value of
Young’s modulus, E ~ 20 GPa, coincides with that obtained
by other bulk methods. For the a-phase of the p-nitrophenyl
nitrony! nitroxide (p-NPNN) radical, no information is avail-
able for single crystals and the estimated value obtained for
the film is £~ 2 GPa.

Keywords: Nanomechanics, brittle materials,
molecular organic thin films, atomic force
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Resum

Mitjangant I'espectroscopia de forces atdmiques s’ha estu-
diat la resposta nanomecanica a la nanoindentacié de la su-
perficie més estable d’'un material trencadis FCC, com és
ara el MgO (100). L’expulsié del material en forma de capes
demostra que la fallida trencadissa implica, de fet, I'inici de
la deformacié plastica o estres critic, i que la deformacié
plastica posterior consisteix en una serie d’esdeveniments
discrets. Es pot determinar amb precisié el modul de Young,
E, a partir de la regié de deformacié elastica mitjancant una
mecanica senzilla, atesa I'absencia de dislocacions indui-
des per la nanoindentacié. Amb aquesta finalitat s’ha de-
senvolupat un nou model fisicomatematic, que té en compte
les interaccions laterals. El valor de l'estres critic de friccid
també s’ha calculat i comentat. Com a consequéncia d’a-
questa expulsid en capes, també s’ha estudiat la resposta
nanomecanica de superficies de capes primes (gruix ~ 1
um) de molecules organiques altament orientades, ja que
es tracta de materials en capes amb interaccions de tipus
Van der Waals. També en aquests materials la superficie es
deforma plasticament i presenta discontinuitats discretes en
les corbes d’'indentacio, associades ara a les capes mole-
culars expulsades per I'indentador. En el cas del metall qua-
siunidimensional tetratiofulvale tetracianoquinodimeta (TTF-
TCNQ), el valor del modul de Young, E ~ 20 GPa, coincideix
amb I'obtingut per altres métodes. En el cas de la fase o del
radical p-nitrofenil nitronil nitroxid (p-NPNN) no es disposa
d’informacié per a monocristalls, i el valor obtingut per a les
capes primes és de E~ 2 GPa.
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ca Fisica i CBEN, Universitat de Barcelona. Marti i Franquées 1. 08028
Barcelona, Catalonia (Spain). Tel. 34 934021240. Fax: 34 934021231.
Email: sanz@qf.ub.es. Website: www.gf.ub.es/nano.

The mechanical properties of solids are illustrated classical-
ly by the behaviour of a uniform cross-section rod subjected
to a uniaxial tension. A plot of the applied stress, o = F/S,
where Fis the exerted force or load and S the cross-section
area, against the linear strain g, (fractional increase in
length) gives the classical deformation curve (Fig. 1). This
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Figure 1. Usual tensile stress-strain curve, showing elastic deforma-
tion along QY, plastic yielding at Y and work hardening along YA.
Brittle solids fail at a tensile stress T.

curve begins with an elastic deformation regime (OY line)
where strains are small and Hooke’s law is expected to ap-
ply: o= Eg, Ebeing Young’s modulus. Above a given critical
stress, o, permanent plastic deformation occurs. If, at point
A, we reduce the stress the material returns elastically to B.
The strain OB gives the permanent plastic extension of the
sample produced during the experiment. Full scale tensile
tests to determine the strength properties of materials, as
described in Fig. 1, are not easily done. Tensile specimens
must be prepared and the experiment must be carried out at
temperatures close to the melting point in order to measure
significant strains [1].

Material engineers have, for decades, used a more con-
venient method of determining strength properties, namely,
measuring the indentation hardness. A very hard indenter
(i.e. a diamond pyramid in the Vickers test) will exert a plas-
tic deformation (known as indentation) on the material sur-
face under the action of a load F. The indented area, usually
taken as the projected area, defines the mean pressure over
the surface p = F/S. Experiments have clearly demonstrated
that almost two-thirds of p plays no role in producing plastic
flow, only one third of p produces the indentation. As a first
approximation the applied pressure must be three times the
uniaxial stress, for the given material, needed to produce
permanent deformation, p = 3o,. The first hardness mea-
surements used loads of a few kgs and produced indenta-
tion diameters of a few millimeters, so material hardness was
expressed in kgf mm? and a hardness scale was estab-
lished, with values ranging from 40 for polycrystalline cop-
per, through 900 for ball-bearing steel, 2000 for sapphire
and to over 10000 for diamond, all of them at room tempera-
ture.

More recently, indentation hardness has been used as a
research tool with solids in order to identify the various con-
stituents of an alloy or to estimate the amount of deformation
produced by a particular metalworking process, including
the creep properties. For such purposes the indentations
must be small enough to resolve the examined features,
what are known as microhardness measurements [2,3]. Typ-
ical loads lie between 0.1 and 10 N and indentation diame-
ters of the test prove to be around 10-100 um, easily and ac-

curately measured by optical microscopy. An alternative ap-
proach is to measure the penetration depth of the indenter
using highly accurate microdisplacement transducers [4].
From the geometry of the indenter the area can be calculat-
ed as a function of load, although corrections have to be
made for elastic yielding and other topographical changes
around the indentation. This approach has been useful for
studying the properties of thin surface layers of metals de-
posited on hard surfaces, or the effect of ion implantation on
semiconductors where the layer of interest may be less than
1 um thick. Typical loads here are between 10° and 102 N.
An important observation in microhardness measurements
is that for metals the hardness tends to increase as the size
of the indentation is reduced [5], and this is attributed to the
limited range of dislocation movement available when very
small volumes are involved. Plastic flow caused by indenta-
tion is associated with a critical shear stress connected to
the material slice at an angle 6 to the direction of the applied
force F. This shear stress is then a fraction of the applied
stress o, T = 0 cos 0 sin 6, having a maximum value at 6 =
45° (v = 0.5 o). This is supported by the observation that
plastic deformation is accompanied by atomic planes slip-
ping over one another. Based on a constant value of the
shear modulus G (defined as the ratio of the shear stress
along the plane gliding over a contiguous plane and the
shear strain), the maximum shear stress the lattice can with-
stand for a fcc single crystal would be only a small fraction of
G (1/10to 1/30). Consequently, with this observation, practi-
cally the whole of the work of plastic deformation dissipates
as vibrational energy in the lattice, i. e. heat. Not more than a
few per cent of the energy can be considered as retained
strain energy in the lattice.

The indentation of metals is largely due to adhesion,
shearing and deformation within and around the regions of
real contact; in fact, it is a process that is often dominated by
plastic flow around the contact zones. Thus, the smaller the
indentation is, the more control over local features can be
achieved; that is to say, a local area with control of surface
defects can be chosen before indentation and the surface
defects created by the indentation itself can be observed.
Recently, valuable information about the mechanical prop-
erties of materials at the nanometer scale has been obtained
[6,7]. Most of these studies have been focused on a ductile
material, Au [8-10]. The indentation depths studied were
mostly over 20 nm and a dislocation mechanism was argued
to be responsible for the observed discrete events in inden-
tation curves.

FCC brittle materials

The complete tensile behaviour shown in Fig. 1, where the
specimen suffers continuous plastic deformation over the
critical stress value o, defines the material as ductile. Cer-
tain materials show no ductility. If we subject such materials
to the tensile test, they stretch elastically and then snap at a
certain critical stress value, causing what is known as brittle
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failure. In an ideal homogeneous material, the brittle crack
will be along a plane normal to the direction of the applied
stress and o; would be the stress necessary to pull one
plane of atoms completely away from a neighbouring plane.
Brittle solids may be made ductile by applying a suitable hy-
drostatic pressure because the critical shear stress may be
exceeded before the tensile stress is large enough to pro-
duce birittle failure. In this vein, it is interesting to note that in
indentation hardness experiments a large hydrostatic com-
ponent of the stress field is present and what appear to be
plastic indentations have been reported, even though some
cracking may also occur. The question is therefore whether
it is really this large hydrostatic component of the stress field
which inhibits brittle failure. Unlike with ductile materials, lit-
tle work has been done on the nanometer-scale properties
of ionic crystal surfaces [11-12]. We have previously studied
the MgO(100) surface which, owing to its high stability, is in-
creasingly used as a substrate for high-temperature super-
conductor thin films [13]. In spite of its technological rele-
vance, however, only a few studies have dealt with the
morphology and surface mobility of this surface [14, 15]. In-
deed, with the exception of NaCl(100) [12(a)] there is little
research on the surface relaxation processes of ionic crys-
tals in general. The experiments that have been carried out
show that relative humidity (RH) has a fundamental role with
respect to the dynamic properties of ionic crystal surfaces
exposed to normal atmospheric conditions [12(b)].

In this context, we have studied the nanomechanical
properties and indentation mechanisms of MgO(100) for
depths of only a few atomic layers. We found [16, 17] that
plastic deformation of the crystal is indicated by discrete
steps in the indentation curve and that these events are cor-
related with the number of atomic layers in the crystal which
are expelled by the tip. Nanoindentations were performed in
a controlled humidity chamber at 0 % measured RH and at
room temperature. Under such conditions, adhesion forces
and RH-related relaxation effects are practically avoided
and Hertzian theory can be used a priori to analyse elastic
properties [18,19]. A Nanoscope Il atomic-force micro-
scope (AFM) from Digital Instruments and Si microfabricat-
ed cantilevers from Nanosensors, having spring constants
of 36 N m~" and a nominal tip radius of less than 10 nm, were
used for indenting and imaging. Nanoindentations were pro-
duced by extending and retracting the piezo while obtaining
a force curve. For a given tip, results were reproducible on
several locations of the sample. For different tips, results
were comparable to the extent of uncertainty in the tip ra-
dius. Itis known that friction effects, manifested as a hystere-
sis in the force curve, are also involved [20]. However, for
such a hysteresis the unloading curve lies above the loading
curve for a fixed position of the piezo, and therefore it can be
discerned from our data. Errors due to piezohysteresis and
non-linearity are minimized for small piezo displacements.
Imaging was performed in the tapping mode™, both before
and around 45s after the indentation. The low load tapping
mode has the advantage of reducing friction between the tip
and sample, and therefore reduces the possibility of dis-

placing material expelled during the indentation. In order to
check if noticeable tip deformation occurs as a result of the
indentation process, the measured width of nearby MgO
steps was compared before and after the indentation. No
significant change was observed. Prior to indentation exper-
iments, force curves on the surface of a diamond thin film
were performed in order to take account of the maximum tip
deformation during indentations. The slope of these force
curves in the contact region was set to 1 and the slope of the
pbrittle material force curves was then compared with it.
Forces were estimated by multiplying the nominal elastic
constant of the cantilever (36 Nm™) by the cantilever deflec-
tion. The penetration depth, 9§, in the indentation curves was
obtained by subtracting the cantilever deflection from the
displacement of the piezo in the force curves [21].

Figure 2 shows an approach curve (cantilever deflection,
A, vs. piezoscanner displacement, z) performed on a freshly
cleaved NaCl (100) single crystal surface. No adherence is
observed as the tip approaches the surface, indicating there
is no detectable effect of adsorption phenomena. At a given
point in the curve, plastic deformation is manifested by dis-
crete events, which are associated with atomic layers being
expelled by the tip penetrating the surface [17]. The effect of
plasticity is evident in the inset of Fig. 2, which shows an
AFM image taken after indentation with the same tip. A cavi-
ty surrounded by the expelled material can be seen.

Figure 3(a) shows the force curve and the corresponding
derivative of a 5.5 nm-deep indentation, as shown by the
profile in Fig. 3(b). Several discontinuities, identified by
peaks in the force plot derivative, are observable in the force
curves. The discontinuities produce a hysteresis in the force
plot, and the unloading curve lies below the loading curve
for a fixed position of the piezo. Following the arguments
mentioned above, these discontinuities would correspond to
atomic planes being expelled by the AFM tip during the in-
dentation. The debris observed in the AFM image is thought
to consist of nanocrystallites expelled during the nanoinden-
tation [23]. The creation of dislocations was not observed on
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Figure 2. Cantilever deflection vs. piezo displacement curve for a
freshly cleaved NaCl (100) single crystal surface. The upper inset
shows a scheme of the indentation process. The lower inset shows a
TMAFM image of the atomic layers expelled by the penetrating tip
and the cavity which is generated.
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Figure 3. Force curve (deflection vs. piezo displacement) and its de-
rivative for a monoatomic deep indentation. Arrows indicate the dis-
continuity in the force curve and the corresponding peak in its deriv-
ative. Inset: AFM image corresponding to the generated cavity.
Cross section gives the depth of the cavity as compared with the
monoatomic step height.

the surface of the monocrystal during our experiments [24].
Note that in this case the distance between points 3 and 4 in
Fig. 3(b), 0.287 nm, corresponding to the step’s height, is
exactly half of the lattice parameter, thus providing further
evidence that it is indeed monoatomic steps which are being
observed here.

Figure 4 corresponds to a nanoindentation curve (applied
force or load vs. penetration) calculated from force plots like
that of Fig. 2. Elastic responses to nanoindentations are usu-
ally analysed in terms of the Hertz model [25], which at-
tempts to describe the deformation of the material through a
flat area of contact. When the penetration is negligible com-
pared with the indenter radius R (& << R), the applied force F
for a paraboloid as a function of 8 can be estimated by the
expression [18, 19]:

F=4/3 E* R"?8%, (1)

where E* stands for the reduced Young' s modulus defined
as1/E*=(1-vy,°)/ B, + (1-v?)/ E. The Poisson’s ratios of
the tip and surface are represented by vy, and v, respective-
ly, and Young' s moduli of the tip and surface by £, and E,
respectively. In the case of MgO, E = 297 GPaand v = 0.18
[26], and taking £y, = 130 GPa and v, = 0.28 for a silicon
cantilever [27], we obtain E* = 113.2 GPa. Taking the radius
of the tip as 7.5 nm (< 10 nm as provided by the manufactur-
er) we simulated the Hertz curve in Fig. 4 using the value E*
= 113.2 GPa. This curve far from reproduces the experimen-
tal data points.

The failure of the Hertz model may be attributed to the
fact that R is in the order of §, a situation beyond the
boundary conditions of the model. When & << R, it has
been shown that the Hertz approximation seems to work
quite well [28]. However, as described in the next section,
experiments we carried out on layered molecular organic

3 +
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Figure 4. Nanoindentation curve for a MgO (100) single crystal sur-
face [O]. Lines simulate the elastic region in terms of different mod-
els. (a) Hertz model, Eq. (1) intext, R=7.5nm, £* = 113.2 GPa, (c)
least-square fit to the proposed spring model (Eq. (2) in text). Inset
gives the scheme of the proposed model with indication of the vari-
ables used.

materials [29] found that the Hertz model fits the experi-
mental data well. Since the main difference is that interac-
tion strength is rather weak in all directions (Van der Waals
interactions) for these organic materials, it seems reason-
able to assume that the surface exhibits negligible defor-
mation away from the tip during indentation. This is no
longer true for ionic materials, where strong lateral coulom-
bic forces play a key role.

In order to reproduce the experimental data we propose a
model that takes into account the lateral forces in the de-
formed surface plane. The simplest way to model the dy-
namics of surface deformation is to consider the lateral inter-
actions represented by two coupled aligned springs,
constrained at both sides (see inset in Fig. 2), the spring
constants k and length dj at zero elongation being identical.
The force applied at the contact mid-point perpendicularly
to the alignment, as a function of the deformation §, has been
calculated to be F(8) = 2k, & (1 - d, /V(8° + d.?)). A general
expression for surface isotropic systems is:

F8) = kd (1-d/V(d* + &), (2)

where k and d stand for an equivalent spring constant and a
coherence length, respectively. The mathematical deduc-
tion of the spring model is shown in Figure 5. The experimen-
tal fit to this model for a freshly cleaved MgO (100) surface is
shown in Fig. 4, while Fig. 6 shows the same for KCI (100)
surfaces. The model reproduces the experimental points
quite well. For the alkali halide single crystals the nanoinden-
tation experiments were also performed in Ar flow for freshly
cleaved surfaces, but with lower spring constant cantilevers
(k, ~ 14 Nm™, from NT-MDT, Russia). The elastic regions of
NaCl, KCI and KBr monocrystal curves were obtained with
these cantilevers because they enable higher sensitivity
than the stiffer ones (~36 Nm™") used for MgO, and vice-ver-
sa. The nanoindentation curve for a freshly cleaved KCI(100)
surface shown in Figure 6 clearly illustrates what has been
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the text.
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Figure 6. Nanoindentation curve for a KCI (100) single crystal sur-
face. Solid line corresponds to least square fit to Eq. (2) in text.

outlined above: the elastic region (that has been satisfactori-
ly fitted to our proposed model) extends up to =~ 70 nN. At
this force value the first layer break is observed, and once
again it corresponds to the lattice parameter value. This is
what is known as the yield point, and the plastic region ex-
tends from that force value on.

Van der Waals layered solids

Following the same philosophy as described above we in-
vestigated the mechanical response to nanoindentations of
layered Van der Waals materials. This is illustrated with thin
films of the molecular organic materials TTF-TCNQ and p-
NPNN radical. Molecular organic materials are anisotropic
and the films are layered with their most energetic planes
(containing the shortest contacts) parallel to the substrate
surface [30]. The weak interplane interactions, together with
the molecular shape, produces interplanar distances in the
order of 1 nm, ideal for nanoindentation experiments.
Nanoindentation and imaging were performed in normal
atmospheric conditions because the material is hydropho-
bic. No adhesion was recorded in the force curves. Si can-
tilevers with a lower spring constant, around 3 Nm™' (nominal
values 1-5 Nm™), were used in this case. After each indenta-
tion the cantilever deflection h was calibrated using a clean
glass slide, rather than a diamond thin film, in order to in-
crease sensitivity. Imaging was performed in TM and the tip
oscillation amplitude was reduced to zero while indenting.

TTF-TCNQ as a model system

TTF-TCNQ is a charge transfer salt exhibiting a monoclinic
crystal structure (P2,/c, a=12.298 A, b=3.819A, c=18.468
A B =104.46°[31]) built up from parallel, segregated chains
of donors (TTF) and acceptors (TCNQ). Thin films of TTF-
TCNQ grown on ex situ cleaved KCI(001) substrates were ob-
tained by thermal sublimation in high vacuum (~107° mbar).
The films consist of highly oriented and strongly textured rec-
tangular-shaped microcrystals. The molecular (002) planes
(ab-planes) are parallel to the substrate surface and the mi-
crocrystals are oriented with their a- and b-axis parallel to
both the [110] and [-110] substrate directions, respectively,
due to the cubic symmetry of the substrates [32]. The sub-
strates were held at room temperature during evaporation.
Figure 7 shows a nanoindentation curve performed on a
flat, defect-free region of a thin TTF-TCNQ film. These films
are stable in air, as is demonstrated by TMAFM measure-
ments [33]. The film behaves elastically below £, = 240 Nn
(= 80 nm x 3 Nm™). In this case, the maximum elastic sur-
face deformation, d,, is ~ 3.5 nm. The shape of the loading
curve in the elastic region may be modeled using Hertzian
theory for a paraboloid indenting a plane as discussed
above. From the fit to the data we obtain E*= 22 GPa, and
taking the same values for E(tip) and wv(tip) as indicated
above and estimating v(TTF-TCNQ) by 0.4, we obtain E = 22
Gpa. This estimation is in the order of previously reported
values obtained from temperature dependent measure-
ments (E = 10 GPa) [34], from the slope of acoustic branch-
es measured by neutron scattering on single crystals (£ =20
GPa) [35], from calculations based on sound velocity using
ultrasonic techniques (E = 34 GPa) [36], and on the inverse
of compressibility coefficients (E = 55 GPa) [37]. The mean
applied stress normal to the surface at plastic yield o, is 4
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Figure 7. Nanoindentation curve (deflection vs. penetration) per-
formed on a thin TTF-TCNQ film. The solid line represents the fit of
the elastic region to the Hertzian model, which is indicated in the in-
set together with the value of the constant Cy; obtained from the fit (k
~3Nm™' v~7.6ums"). Also illustrated is the direction of the ap-
plied force with regard to the molecular distribution in the film.
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Figure 8. TMAFM image of the indented region with its correspond-
ing line profile. The resultant plastic deformation is compared with a
monomolecular step.

GPa, after averaging over several indentation curves ob-
tained with different tips. This value is comparable to, o, = 7
GPa for Au(111) [38] and o, = 10 GPa for MgO(100). The es-
timated critical shear stress is T = 2 GPa. Above o the ma-
terial deforms plastically as is shown by discrete discontinu-
ities (multiples of ~ 0.9 nm) associated with molecular layers
being expelled by the penetrating tip (the distance between
two consecutive ab-molecular planes is 0.92 nm). This is il-
lustrated in Fig. 7, where discontinuities of 0.9 and 2.8 nm
are observed just above the yield point. In Figure 8, a

TMAFM image taken after an indentation process, the plas-
tic effect of the nanoindentation on the surface is clearly ob-
servable. The total tip penetration (~ 5 x 0.9 nm) is larger
than the induced depth defect: ~ 1.8 nm (= 2 x 0.9 nm).
This, and the fact that the depth corresponds exactly to two
molecular layers, suggest ordered relaxation of the material
upon unloading. The close-lying step in Fig. 8 (left of image)
enables heights to be accurately calibrated (step height =
0.92 nm). No indentation-induced dislocations are observed
in the vicinity of the indented region and the material ex-
pelled by the penetrating tip does not form debris around
the indentation. Most probably it evaporates during the sub-
sequent scan process of image acquisition [39].

p-NPNN

Thin films of p-NPNN obtained by thermal evaporation in high
vacuum on glass slides held at room temperature crystallize
in the monoclinic a-phase. The molecular (002) planes (ab-
planes) are parallel to the substrate surface and exhibit a high
degree of orientation, but no in-plane texture [40]. Figure 9
shows a nanoindentation curve (k~3 Nm™) performed on an
as-grown a-phase p-NPNN thin film. The applied force is per-
pendicular to the molecular ab-planes. The film behaves
elastically below £, = 420 nN (= 140 nm x 3 Nm™') and the
maximum elastic deformationis ca. 10 nm. Afitto the Hertzian
model of the elastic response gives £~ 1.7 GPa. After averag-
ing over several indentation curves obtained with different
tips we obtained o, ~ 1.3 GPa and t ~ 0.6 GPa. As for TTF-
TCNQ, above the yield point discrete discontinuities corre-
sponding to multiples of the distance between two consecu-
tive ab-planes (= 1.2 nm) are observed.

The nanometer scale surface morphology of the o-p-
NPNN thin films is rather complex. It is composed of a ran-
dom distribution of opposite sign dislocations (spirals)inter-
acting in pairs (Frank-Read growth mechanism), each spiral
emerging from a hollow core [41]. The relatively small dis-
tance, L, between emerging points of the interacting spirals

RS .
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Figure 9. Nanoindentation curves (deflection vs. penetration) per-
formed on an as-grown thin a-p-NPNN film. The solid line represents
the fit of the elastic region to the Hertzian model, which is indicated
in the inset together with the value of the constant C;; obtained from
the fit. (k~3 Nm™, v~ 14.0 ums™") Also illustrated is the direction of
the applied force with regard to the molecular distribution in the film.
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(L > 50 nm) indicates a rather high dislocation density,
caused by a rapid in-plane crystallization from an initially
amorphous state [42]. The a-phase transforms sponta-
neously into the more stable p-phase. However, this transfor-
mation is inhibited if the thickness of the as-grown a-phase
films lies below a critical thickness (~ 1 um). The stabiliza-
tion, which is induced by residual stress after growth [43], al-
lows physical properties of this otherwise metastable phase
to be determined. The accumulated stress field after growth
induces an increase in activation energy of critical nuclei for-
mation from the p-phase to the a-phase matrix, and thus en-
ables inhibition of this solid-solid phase transition.

No experimental determinations of E, o, andtare available
for single crystals of a-p-NPNN due to their rapid transforma-
tion to the p-phase. The residual stress after growth may con-
tribute to the estimated values of such parameters for thin
films, since defects hinder the propagation of dislocations.
This could be modeled by the Hall-Petch equation, o, ~ oy‘”‘ +
K L2, valid for grain boundaries, where oy‘”‘ and K represent
the intrinsic stress (low dislocation density) normal to the sur-
face at plastic yield and a constant, respectively, and where
the grain size is replaced by the distance between disloca-
tions [44]. Thermal stress is negligible because the sub-
strates are held at room temperature during growth.

Concluding comments

Indentation description of materials has become an easy
way of determining the mechanical properties of solids, but
different models need to be applied to the results in order to
explain cavity formation during indentation. The observed
phenomena include the formation of dislocations and the en-
ergy transferred to the solid in order for the material to flow
around the indenter, forming debris. Nanoindenters have
been used to describe different regions in a monocrystal
surface, such as the different response to indentation on a
Au(111) terrace, either far from or close to a step[10]. A
nanoindentation of a few nanometers on Au(111) generates
new steps along certain preferred directions [45] due to the
ductile character of metals, which enables them to re-
arrange easily before flowing under the pressure exerted by
the tip. Brittle materials do not have this ability and, as
demonstrated by our results, no dislocations or step genera-
tion are observed. We have shown that the loading curve in
the indentation plot is not a continuous change, as de-
scribed in microindentation experiments [4], but rather a se-
ries of discontinuities corresponding to successive breaks of
material layers interspersed with elastic deformation of the
uppermost layer. Thus, the first break observed after the
elastic regime of the surface can be considered as the criti-
cal stress of plastic deformation. Given how the loading
curve operates, we concluded that the breaks are always
produced at the same critical stress.

The difficulty of synthesizing sufficiently large single crys-
tals of molecular organic materials hinders the description of
several physical properties, and parameters associated with

mechanical properties cannot be obtained by conventional
methods. As demonstrated, however, such parameters can
be estimated by means of nanoindentation performed on
thin films, which provide larger areas of highly oriented and
crystalline domains of the precursor materials. Thin film
growth also offers the possibility of stabilizing metastable
phases. Determining the physical properties of such phases
cannot be done with single crystals because of their intrinsic
instability. In the case of TTF-TCNQ), our experimentally ob-
tained values lie within the range of currently published data
for large single crystals. To our knowledge, no such informa-
tion from single crystals is available for a-p-NPNN.
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