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Nowadays, the solution of crystal structures from X-ray dif-
fraction data is a well standardized technique with important
implications in most fields of science as, for example, in Ma-
terials Sciences where it provides the basic features of the
materials, thus allowing better description and frequently an
improvement in the knowledge of their properties. In Bio-
chemistry it provides detailed knowledge of compounds like
proteins, nucleotides, and enzymes etc. In the specific case

of Biochemistry, the principal difficulty in solving atomic
structures is the problem of huge unit cells containing thou-
sands of atoms. In Materials Sciences, however, the com-
pounds possess smaller unit cells but, since they are nor-
mally polycrystalline, the diffraction experiment gives only
incomplete intensity data sets.

In Crystallography, the term direct methods denotes the
methods capable of solving the atomic arrangement in a
crystal structure directly from the measured intensities of the
reflections using as additional information the approximate
unit cell atomic content. Until the last decade most of the ad-
vances in the field of direct methods concentrated on the
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Abstract

One of the most important scientific achievements of the XX

century has been without any doubt the discovery of X-ray
diffraction by crystalline matter and the subsequent use of
this process to determine the crystal structures of the materi-
als. This field matured at the end of the century with the al-
most automated solution of the crystal structures of small
compounds, allowing various new applications of X-ray dif-
fraction methods to emerge. Among the most relevant ones
for Materials Sciences one may mention the solution of crys-
tal structures from X-ray powder diffraction intensity data or
the determination of atomic arrangements in the surfaces of
substrates and, eventually, of the corresponding deposi-
tions. Since these advances are closely related to a recent
reinterpretation of the traditional direct methods of solving
crystal structures, a short introduction to them will be given
first. Then we deal with the modification of such methods to
cope with the particularities of these two applications and, fi-
nally, some examples will be described.

Resum

Una de les fites científiques més importants del segle XX ha
estat sens dubte la descoberta de la difracció dels raigs X
per la matèria cristal·lina i l’aprofitament d’aquest procés en
la determinació de l’estructura cristal·lina dels materials.
Tanmateix, no és fins a la darreria de segle que arriba la ma-
duresa en aquest camp amb la solució gairebé automàtica
de les estructures cristal·lines petites. Amb la maduresa
emergeixen noves aplicacions dels mètodes de difracció.
Cal destacar, entre les més importants per a la Ciència de
Materials, la determinació de les estructures cristal·lines a
partir de dades provinents de la difracció dels raigs X en
pols cristal·lina, així com també la determinació de la dispo-
sició atòmica en les superfícies dels substrats i dels corres-
ponents dipòsits, quan n’hi ha. Com que els avenços en
aquestes dues aplicacions van estretament lligats a una
reinterpretació recent dels mètodes directes tradicionals de
solució d’estructures cristal·lines, s’ha cregut convenient
fer-ne una breu introducció. Seguidament, es comentaran
les modificacions introduïdes en aquests mètodes, per tal
de poder tractar les particularitats específiques d’aquestes
dues noves aplicacions, i finalment, es descriuran alguns
exemples.
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development of the methods themselves, i.e. the intensity
data used for these developments corresponded to ideal
single crystal diffraction experiments. More recently, howev-
er, developments like the direct methods modulus sum func-
tion have helped to extend the applicability of such methods
to less favourable situations like powder diffractometry or the
crystallography of reconstructed surfaces. The following
section gives a brief introduction to these powerful methods.

Modern direct methods

Direct methods take advantage of two general properties of
the periodic electron density distribution � in the crystal,
namely its positivity and its peakness (atomicity). Conse-
quently, as the first requirement for their application, direct
methods need intensity data up to atomic resolution. Should
this not be available, supplementary information is neces-
sary (for example, information about the internal geometry of
the molecular fragment). 

As is well-known, the electron density in a point r of the
crystal can be expressed in the form of a Fourier series in
which the coefficient F(h) is called the structure factor of re-
flection h:

(1)

The structure factor is a complex quantity, F(h)= |F(h)|
exp(i� (h)). Its modulus |F(h)| is related to the measured in-
tensity and can be easily derived from it. If both modulus
and phase value � (h) were known (at least for the strongest
reflections), it would be quite straightforward to calculate the
electron density distribution from the above expression. Un-
fortunately, the phase information is lost during a conven-
tional diffraction experiment. This constitutes the so-called
‘phase problem’ in Crystallography. In other words Direct
methods are necessary to find the values of the collectivity �
of phases of the large structure factors. The general strategy
for finding the values of � consists of giving initially random
values to the phases, and then introducing them into a suit-
able phase refinement function which incorporates or makes
use of all the a priori known information (positivity, atomicity
and structure factor moduli derived from measurement). Af-
ter some refinement cycles, the values of � maximizing this
function are assumed to be the true ones and are used to
compute the Fourier map which will show the atomic peaks.
To be sure that the correct solution is found, multiple phase
refinement trials with different sets of initial phase values are
performed. The solutions of these trials are ranked accord-
ing to the final value of the phase refinement function (see
Table 1).

The critical point, however, is how to combine all the a pri-
ori known information to give an effective and robust phase
refinement function. Experience has shown that this can be
achieved by introducing the ‘squared structure’ concept. In
analogy to the true electron density distribution �, the

squared distribution �2 can also be written in the form of a
Fourier series. If the corresponding Fourier coefficients are
denoted by G(h)= |G(h)| exp[i� (h)], then the modulus |G(h)|
can be computed in terms of � by means of the expression

(2)

which uses the experimentally known large moduli of reflec-
tions h’ and h-h’ in an active way. The atomicity condition
and the positivity criterion are incorporated by forcing � and
�2 to be similar, or in other words, by making, for the strong

[ ]| ( , )| ( ) ( ) cos ( ) ( ) ( )G K F Fh h' h h' h h' h h'
h'

� = � � � + + �� � � �

� �( ) ( ) exp( )r h hr
h

= � ��
1

2
V

F i

Table 1. Schematic description of the crystal structure determina-
tion process as implemented in the 2000 version of the direct meth-
ods program XLENS [25]. Firstly, NSET phase refinement trials are
performed by assigning initially random values to the collectivity �
of phases of the structure factors of the large reflections. The phas-
es are then refined by maximizing the direct methods modulus sum
function S(�) [21]. In general, a value NSET=100 suffices for solving
small structures (up to approx. 200 atoms).

�ini(nset)�ini(1) ..............�ini(2)

�ref(nset)�ref(1) .............�ref(2)

Equivalence test for
solutions with S(�ref) >

0.85·Smax

Input: • 	F(h)	 large + weak
• atomicity of �
• positivity of �

Phase refinement through
maximization of S(�)

For each non-equivalent solution:
Weighted Fourier-recycling

+
R-value calculation

(including all reflections)

For one solution with R < 0.25:
• atom connectivity analysis
• graphic display of the structure

Structure solution of crystal
structures with direct methods
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reflections, the phases values �( h)and �( h) equal and the
values |F(h)| and |G(h)| proportional.

The knowledge that the structure is made of atoms can
also be used to decompose |G(h)| as a function of the inter-
atomic vectors rj-rk. In this way, all the zero vectors (those of
type j = k) can be grouped into a single term <|G|>. For an
equal atom structure belonging to space group P1 with N
atoms in the unit cell and with corrected scattering factor de-
pendence, it holds that

(3)

For structure factors with large moduli |G(h)| the double
sum of cosinus cosine terms will be a large positive quantity
while for small structure factors the corresponding sum will
be large and negative. If only these two subsets of reflec-
tions are considered one can define function

(4)

which has a large positive maximum for the correct phase
values. Q(�) is part of the more powerful phase refinement
function called modulus sum function S(�)[21] which results
from combining Q(�) with the residual R(�),

(5)

Hence, the final expression for S(�) is

(6)

S(�) is extremely effective and powerful and, for small struc-
tures, the top ranked solutions are almost always the correct
ones. These phase values are then used to compute the final
Fourier map. Physically, maximization of S(�) is approxi-
mately equivalent to maximization of the integral

(7)

with P’ being an observed Patterson-type function with re-
moved origin peak and P(�) the corresponding calculated
one.

Structure solution from powder data

The number of structures solved from powder data has in-
creased spectacularly recently. This increase is a direct
consequence of the availability of more complete and reli-
able sets of extracted intensity data, which is largely due to
(i) the use of strictly monochromatic radiation, coming either
from synchrotron sources or from laboratory diffractometers

equipped with curved incident-beam monochromators, (ii)
the development of two-dimensional CCD detectors and im-
age-plates, and (iii) the extraction of integrated intensities
with whole-pattern profile-fitting procedures which incorpo-
rate more accurate corrections and peak profile descrip-
tions [11], [29]. In spite of this considerable progress, there
are some limiting factors which are either inherent to the
crystal structure, e.g. unit cell size and crystal symmetry, or
difficult to control, e.g. sample quality. In general, the best
patterns are those obtained from highly crystalline materials
measured with synchrotron radiation. Due to the narrow
peak widths, accidental peak overlap is then minimized and,
for relatively small structures, the intensities of most reflec-
tions up to atomic resolution can be extracted. In practice,
however, the crystallinity of most powder samples for which
no sufficiently large single crystals can be grown is rather
poor. Consequently, this ideal situation is often not attained,
and the incidence of accidental overlap rapidly increases
with the Bragg angle.

In particular, for structures in which the Laue group is a
subgroup of the lattice group, systematic overlap is also pre-
sent. This means that the d-spacings of multiple symmetry-
independent reflections coincide, and, therefore, it is not
longer possible to estimate individual integrated intensities.
In any case, one «cold comfort» of the presence of system-
atic overlap is that the amount of accidentally overlapping
multiplets is reduced. Recently, [15] and [26] have demon-
strated by solving the crystal structure of the dominant crys-
talline phase of the high alumina cement that the direct
methods modulus sum function can be successfully em-
ployed with intensity data obtained by equipartioning the
global intensity of each multiplet (Fig.1). This result will have
important implications not only for powder diffraction but
also for other techniques with similar ‘twinning’ problems.
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Fig. 1. Perspective view along the c axis of the crystal structure of
the dominant crystalline phase (CAH10 in cement notation) of the
hydrated high-alumina cement [15]. The crystallographic data are
a=b=16.387, c=8.279(, Z=6, V=1925(3, space group P63/m, formula
[CaAl2(OH)8(H2O)]·1.84H2O. The powder pattern used for solving
the structure was collected in reflection geometry on a high resolu-
tion powder diffractometer equipped with a rotating anode and a
primary curved Ge(111) monochromator.
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The first procedure for extracting integrated intensities
which uses the metric as a constraint was developed in 1981
[17]. However, it is the two-stage LeBail method which is be-
coming more popular. Unlike Pawley’s method, here the in-
tegrated intensities and the profile parameters are refined
separately. In stage one, the integrated intensities are esti-
mated by introducing the approximate profile parameters in
a recursive expression, like the following employed in the
program AJUST [24]:

(8)

where the summation extends over the i points of the pattern
for which the value of the profile function 
 of reflection h is
not negligible, and where yo(i), yc(i), and w(i) are, respective-
ly, the net observed and calculated counts and the weight
associated with the measurement at 2�i. To increase the sta-
bility of the extraction process, the additional condition
I(h)new � 0 is introduced. In stage two, the profile parameters
are refined by Rietveld least-squares while keeping the val-
ues of the integrated intensities fixed. This two-stage
process is repeated until convergence is achieved. In gen-
eral, two reflections can be resolved if their angular distance
is greater than 0.45 times the respective FWHM (full width at
half maximum). The functions more commonly used to de-
scribe the peak functions are lorentzians, gaussians or the
convolution of both, depending on the type of radiation, the
nature of the sample and the instrumental geometry.

For patterns with slight accidental peak overlap, the sim-
plest way to estimate the intensities of the overlapping re-
flections is to equidistribute the total intensity of the multiplet.
More sophisticated approaches are based on the squared
Patterson function or on maximum entropy methods, e.g. [4],
[5], [8], [16]. All these methods have been applied with vari-
able degrees of success and, in general, work better for
high quality powder patterns.

Prior to commenting on the two principal strategies of
overcoming the accidental peak overlap problem, a classifi-
cation of the structure types according to the effective reso-
lution of their powder patterns is in order. Effectively, in pow-
der diffraction the successful application of direct methods
depends on the quality of the diffraction data and on the
chemical composition of the structure to be solved. The in-
formation regarding these two points can be summarized in
the following parameters:

(i) The effective resolution of the data set, which is de-
fined as the d-spacing (dmin) of the outer resolution
shell for which most reflections have reliable integrat-
ed intensities.

(ii) The minimum separation t between dominant scatter-
ers. The two limiting cases are the purely organic
compound (t = 1.45 Å) and the inorganic compounds
containing heavy atoms (t >3 Å).

In general, direct methods will be successful only if the ef-

fective resolution of the intensity data satisfies the condition
dmin� 0.7·t [22].

Obviously, the corresponding direct methods solution will
principally reveal the partial structure of the dominant scat-
terers. The cases represented by inorganic and zeolitic
compounds are very illustrative. While for organic structures,
a dmin value of 1 Å is required, for zeolitic compounds where
the SiO4 units act to some extent as dominant scatterers,
dmin values in the order of 2 Å can be tolerated (the minimum
separation between Si atoms is approximately 3.1 Å). In any
case, the availability of extraction methods supplying inten-
sities up to dmin resolution is necessary for the application of
direct methods. In general, the smaller the value of dmin, the
better they work. However, due to the changing aspect of
the Fourier maps at different resolutions, their correct inter-
pretation is not always simple, e.g. in the case of zeolites,
the SiO4 unit appears as a single peak at moderate resolu-
tion. Hence, according to the previous expression, the fol-
lowing conclusions can be drawn:

(i) Direct methods cannot be applied to organic com-
pounds if only laboratory X-ray powder diffraction data
are available. For these compounds, use of synchro-
tron radiation is mandatory. An alternative solution is
the use of Patterson search methods which will work
well even at low resolution [20].

(ii) Inorganic compounds represent (at least theoretical-
ly) the most favourable case, since the positions of the
heavy atoms can be found at relatively low resolution.
For coordination compounds, the rest of the structure
formed by unresolved but defined molecular frag-
ments (e.g. C5 or C6 rings) can be modeled using the
pseudo-atom approach [6].

How to overcome the accidental peak overlap

According to the foregoing analysis, it is evident that inor-
ganic and organic compounds require different peak over-
lap treatments and hence will be handled separately:

Inorganic compounds
As has been shown recently, it is possible to overcome the
peak overlap problem up to a dmin resolution either by simul-
taneously refining the phase values and the partitioning co-
efficients during the structure solution process, or by using
textured samples of the compound under study, thus taking
advantage of the latest instrumental developments (syn-
chrotron radiation and 2D CCD detectors). Note that both
methods are complementary and quite general, i.e. they can
be applied to compounds with uncertain cell contents and
with large atomic disorder, a situation often found when
studying complex minerals with limited crystallinity. The si-
multaneous refinement of phases and partition coefficients
has been already applied to the solution of the mineral tin-
ticite [27].

When peak overlap becomes more serious, i.e. when for
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many peaks the shortest interpeak separation is less than
0.3-0.5 times the FWHM (full width at half-maximum), alter-
native strategies are required (Table 2.). The principal
method is the combined minimization of powder pattern dif-
ferences and potential energy by simulated annealing. Re-
cently, [9], [19], [3] have applied related procedures to the
solution and refinement of complex inorganic structures. In
all these methods, the refined variables are defined in direct
space, so that no extraction of integrated intensities is nec-
essary. However, in order to be successful, they require,
firstly, the unit cell contents to be accurately known and,
secondly, the absence of significant disorder in the struc-
ture. Considering the steady increase in computing power,
these methods are expected to play an increasingly impor-
tant role in the future.

Finally, it is worth mentioning that direct methods can be
also assisted by Fourier recycling procedures, including
topological searches. This strategy has been specifically
developed for zeolite-like compounds by [13] and [14] and
has solved a number of previously unknown structures.

Organic compounds
For these, a different philosophy is followed. Since there is
no possibility of solving the overlap problem up to dmin reso-
lution and since at least part of the geometry of the molecule
and its connectivity is known, the structure solution is carried
out with variables defined in real space, namely the Euler an-
gles giving the correct orientation of the molecule, the coor-
dinates in the unit cell of the local origin of the molecule and,
finally, when necessary, the refined torsion angles. Thus, the
whole powder pattern can be calculated at each stage of the
refinement using this limited number of variables and the

overlap problem is avoided. The function to be minimized is
the residual R(�)

(9)

with � being the variables defined in real space [7]. This is a
very active research field with important economic implica-
tions. These methods can be applied to the structure solu-
tion of the various polymorphs of pharmaceutical com-
pounds and drug substances which do not grow as single
crystals.

Advances in surface X-ray diffraction
crystallography

At first glance, the surface of a crystal may appear very
smooth. However, its heterogeneity becomes evident when
observed in more detail with an electron microscope. The
surface exhibits steps of variable height separating domains
made up of atomic planes in which multiple point defects
can be detected. These domains can extend over several
atomic rows depending, of course, on the preparation of the
sample. Fortunately, due to the large area illuminated in an
X-ray diffraction experiment, most of the surface defects are
averaged out and only the ideal atomic arrangement can be
derived from the measured intensities. This is in contrast to
electron diffraction where smaller areas are considered. The
modification of the atomic geometry at the surface or inter-
face causes their electronic properties to be different than in
the bulk. Besides the electronic properties, both the atomic
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Table 2. The solution of inorganic structures from X-ray powder diffraction intensity data. The refinement can be performed either in real space
using the atomic coordinates as variables or in reciprocal space employing the phases of the structure factors. Methods working in real space
can tolerate severe peak overlap but, as a counterpart, require the absence of atomic disorder and the chemical composition of the compound
to be accurately known. 

Extraction of integrated
intensities

+
intensity estimation of
overlapped reflections

Crystal
structure of inorganic

compounds from
powder patterns

Application of ‘direct methods’
e.g. the modulus sum function

reciprocal space
refinement

real space
refinement

Combined minimization by
simulated annealing of

powder pattern differences
and potential energy

Factors affecting each
type of refinement:

• atomicity / amount of
overlap for Sayre's
equation application

• accurate knowledge
of chemical contents

• presence of atomic
 disorder



100 Jordi Rius, Xavier Torrelles and Carles Miravitlles

structure and composition also determine to a large extent
the chemical reactivity of the surface.

Normally, atoms in the vicinity of the surface undergo dif-
ferent types of rearrangements, the two most common ones
being:

a) Surface reconstruction: If a and b denote the basis
vectors of the unit cell of the bulk structure which are
parallel to the surface, then the two lattice vectors a
and b of the reconstructed surface cell are of the type
a = m1a + m2b and b = n1a+n2b with m1, m2, n1, n2=0,
±1, ±2, ... This is shown in Fig.2 for the c(4x2) recon-
struction of the Ge(001) surface [10]. The symbol
c(4x2) indicates that the cell is centered and that the
coefficients of a and b are m1=4, m2=0, n1=0, n2=2, re-
spectively. The unit cell of the reconstructed surface is
always less symmetrical than the surface unit cell of
the bulk structure. 

b) Surface relaxation: Here, both the topology as well as
the interatomic distances of the more external layers
remain approximately the same as for the bulk (m1=1,
m2=0, n1=0, n2=1). The principal modifications are in
the separations between the upper layers which can
change slightly.

There are a great variety of techniques giving information
about the atomic structure of surfaces. One of the most pop-
ular is the low-energy electron diffraction technique (LEED).
This technique is affected by electronic multiple scattering
and requires extensive computer simulations, which often
leads to ambiguous results. In contrast, the application of
the well-known X-ray diffraction techniques to surface sci-
ence is relatively recent. Since the scattered intensity from a
surface is approximately 105 orders of magnitude lower than
that from a bulk crystal, a very intense X-ray beam is re-
quired. The solution to this limitation arrived with the advent

of the second and third generation synchrotron radiation
sources which provide much more intense beams than rotat-
ing-anodes.

Even though the X-ray diffraction study of surface struc-
tures relies on well-established concepts first developed for
the analysis of bulk structures, there are significant differ-
ences. In the case of a bulk crystal, for example, diffraction
occurs only if the momentum transfer q of the X-ray beam
satisfies the three Laue conditions, i.e. it is given by a point
(h,k,l) in reciprocal space where h, k, and l are three integers
(Miller indices) describing the reflection. For surfaces, the
third Laue condition is relaxed due to the truncation of the
surface, and may take any real value. Consequently, diffrac-
tion will take place along rods in reciprocal space. The termi-
nation of the crystal by the surface gives rise to intensity tails
of the reciprocal lattice points (normal to the surface). The
tails connect the various reciprocal lattice points [1], [2],
[28]. The total intensity in a crystal truncation rod (CTR) is the
result of the interference between bulk and surface contribu-
tions. These rods can be measured with a 6-circle diffrac-
tometer. Fig.3 gives a schematic view of the 6-circle diffrac-
tometer normally used for surface structure determination,
and Fig.4 indicates the reciprocal space geometry achieved
with this diffractometer.

In Surface Crystallography, the sample preparation as
well as the measurements must be performed in ultra high
vacuum (UHV) conditions coupled to the X-ray diffractome-
ter. Nowadays, these UHV chambers have become very so-
phisticated by using a rotary feedthrough which couples the
motions of the diffractometer to the sample in vacuum [12]. 

In the case of relatively simple reconstructed surfaces,

Fig. 2. Top view of the Ge(001)-c(4x2) structure. The dimer layer, as
well as the first, second and third sublayers are shown. The antifer-
romagnetic ordering of the dimers is apparent.

Fig. 3. Schematic view of a 6-circle diffractometer. � and � circles
locate the normal to the surface sample in the horizontal plane. �-
circle selects the incidence angle of the incoming beam. �-circle
rotates the sample along the normal surface direction. � and � cir-
cles moves the arm detector parallel and perpendicular, respective-
ly, to the surface sample.
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the determination of the atomic structure is normally accom-
plished by direct interpretation of 2D difference Patterson
maps. These maps are computed with the intensities of the
reconstruction in-plane reflections only, i.e. those reflections
with no contribution from the bulk (l � 0). Once interpreted, it
is necessary to extend the derived structure model to 3D by
using the full data set (in-plane plus out-of-plane data). Very
often, the interpretation of such 2D Patterson maps is not
trivial, especially for reconstructions with large unit cells. In
such cases, direct methods offer an alternative to the other
existing methods.

For the application of these methods, which are the meth-
ods of choice for solving the atomic structure of bulk crys-
tals, the intensity data set has to meet two conditions:

a) Atomicity condition: The experimental resolution of the
diffraction data must be high enough to produce sep-
arate atomic peaks in the corresponding Fourier
maps. Since there is in principle no problem in mea-
suring reconstruction reflections up to a suitable reso-
lution, this first requirement is generally satisfied.

b) Positivity condition: The data set must be measured
without systematic omission of any set of reflections,
or –what amounts to the same thing– the structure fac-
tor moduli of all Fourier terms involved in the calcula-
tion of the electron-density � with expression (1) must
be available. Unfortunately, the integer order reflec-
tions possessing contributions of the bulk and the sur-
face are problematic and, at least for the moment,
must be excluded from direct methods. This systemat-
ic omission of Fourier terms in the summation (1) re-
sults in a � distribution containing both positive and
negative regions. Hence, the positivity criterion is vio-

lated and � and �2 are no longer similar. To distinguish
between this partial electron density distribution and
the true one, the former is called difference electron
density distribution (�). In general, knowledge of � im-
plies the solution of �.

The positivity of � (combined with the atomicity) is mainly
used in (2) to express the |G(h)| in terms of the measured
|F(h)| and of the phases �(h). Since the positivity no longer
holds for �, one can assume that � resembles its cube �3

[23,30]. Let the structure factors C(h) of �3 now be intro-
duced. Then the observed |C(h)| are approximately propor-
tional to the measured |F(h)| and the |C(h,�)| can be ex-
pressed in terms of the |F(h)| and their respective phases
with an expression equivalent to (2), the principal difference
being an additional summation.

Consequently, by replacing the G by the C in (6), a direct
methods sum function results, which is capable of working
with partial data sets. 

An example of the application of this procedure to the so-
lution of reconstructed surfaces is illustrated in Fig.5. This
figure shows the projected � distribution (�-map) of the
C60/Au(110)-p(6x5) reconstruction [18]. Fullerene mole-
cules are placed hexagonally onto the surface at two differ-
ent levels. These levels are given as dashed lines forming
distorted (deeper level) or undistorted (topmost level)
hexagonal patterns. The distorted hexagons are larger than
the undistorted and, in addition, form calyx-shaped units in
which the Fullerene molecules can be accommodated.

Fig. 4. Reciprocal space geometry obtained with the 6-circle diffrac-
tometer described in Fig.3.

Fig. 5. Contour difference map (only positive regions) of
C60/Au(110)-p(6x5) surface reconstruction by applying the differ-
ence sum function to the data set with no perpendicular momentum
transfer (l « 0). Dashed lines indicate the locations of the Fullerene
molecules.
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