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Summary. Fluid flows in disordered media are present in natural and industrial 
processes such as soil irrigation and secondary oil recovery. These flows display 
complex spatial and temporal non-equilibrium dynamics arising from the heteroge-
neities of the medium. Average magnitudes are not sufficient to allow the complexity 
of their dynamics to be captured. Deeper insight can be gained from a scale-
dependent statistical analysis of the fluctuations. Here we introduce the basic laws 
governing fluid flows in disordered media. Focusing on two-fluid displacements with 
a well-defined interface, we discuss several non-equilibrium dynamic features that 
include scale-invariance, avalanches, non-Gaussian fluctuations, and intermittency. 
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Introduction

Fluid flow through disordered media occurs in geological, 
agricultural, and industrial processes of great importance. 
Crude oil and gas, for instance, is present in large natural 
reservoirs and impregnates porous rocks. In secondary oil 
recovery, water or gas is injected into the oil reservoir in 
order to displace the oil through the medium and drive it 
to the production wellbore 1. Underground water similarly 
flows through geological formations consisting of porous 
solids, granular materials, and fractured rocks. Flow in either 

porous or fractured media is, thus, a central topic in the 
fields of petrology and hydrology. It is also highly relevant 
in challenging industrial processes, such as the filtering of 
chemicals and contaminants.

The complexity of flows in disordered media arises from 
the heterogeneous structure of these media. The relevant 
features encompass a very wide range of spatial scales. The 
smallest correspond to pore sizes, typically ranging from 
1 nm (micropores) to > 50 nm (macropores). Flow at pore 
scales is described by the classical hydrodynamic equations of 
mass continuity and momentum conservation. A continuum 
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description, on a coarser scale called the Darcy scale, can be 
obtained by proper averaging over a representative volume 
of the pore space. In averaging, the assumption of a random 
distribution of pore-scale properties is usually not sufficiently 
accurate. The presence of extended spatial correlations in 
natural porous formations (e.g., the clustering of low- and 
high-porosity areas, or the strong correlation between the 
volume of the throats and the average volume of the pores 
to which they are connected) must be taken into account. 
Flow at this scale is described by the equations of continuum 
mechanics of porous media, of which Darcy’s law (discussed 
below) plays a central role. The final scale of interest is the 
field scale, which can extend over kilometers. In this case, 
the large-scale heterogeneities in the physical properties of 
the medium are an important consideration. Consistently 
relating the micro-scale flow quantities to their corresponding 
Darcy-scale variables is key to understanding transport and 
transport-controlled processes such as chemical reactions in 
porous media [20].

Here we focus on two-phase fluid displacements in 
disordered media. In this kind of flow, a fluid originally 
residing in the disordered medium is displaced by a second, 
invading fluid. There is a well-defined (although eventually 
highly-distorted) interface separating the two fluids. 
Secondary oil recovery, soil irrigation, and several other 
relevant fluid displacements belong to this family of flows. As 
discussed below, both the morphology and the dynamics of 
the interface are dramatically influenced by the randomness 
inherent to the heterogeneous structure of the disordered 
medium. In considering the different features of this problem, 
several advanced concepts of non-equilibrium statistical 
physics are encountered, including scale invariance, complex 
correlations, anomalous fluctuations, and intermittency.

Darcy’s law and permeability

Henry Darcy, a pioneer in hydrology studies, carried out 
systematic experiments on the flow of water through beds 

of sands. In his monograph “Les fontaines publiques de la 
ville de Dijon” [4], published in 1856, he established that the 
discharge rate (volume per unit time) of fluid flowing through 
a long cylinder filled with sand was proportional to the 
pressure drop between the two ends of the cylinder (inlet 
and outlet). This linear relationship is analogous to Ohm’s law 
of electricity or Fourier’s law of heat conduction. However, 
like those other phenomenological relations, it has limited 
validity. Darcy’s law applies to creeping flows, for which the 
Reynolds number (Re) is < 1 2. Apart from geometrical factors, 
the proportionality coefficient in Darcy’s law is the ratio of an 
intrinsic property of the medium, its hydraulic permeability, 
to an intrinsic property of the fluid, its dynamic viscosity. The 
concept of hydraulic permeability makes sense only on a 
coarse-grained spatial scale (the Darcy scale), above the pore 
scale. Moreover, to have constant permeability a medium will 

1 This technique can result in the recovery of 20–40% of the original oil in place. This is a significant improvement over primary recovery, in which crude oil 
is driven into the wellbore by the combined action of the natural pressure of the reservoir and gravity, in which case only about 10% of a reservoir’s original 
oil is typically recovered in place.
2 The Reynolds number Re is a dimensionless ratio of inertial to viscous forces. It is typically used to distinguish between laminar (low Re) and turbulent (high 
Re) flows.
3 In a medium with a permeability of 1 darcy, a pressure gradient of 1 atm/cm on water (dynamic viscosity 1 mPa·s) produces a discharge rate of 1 cm3/s 
through a cross-section of 1 cm2.
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Fig. 1. Sketch of the apparatus used by Henry Darcy to verify his law 
( )( )2 1/ /Q A P P Lκ µ= − − , where κ  and µ  are the hydraulic permeability of the 

medium and the dynamic viscosity of the fluid, respectively. The background 
image is reproduced from Darcy’s book [4].
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have to exhibit rather homogeneous and isotropic porosity 
on the Darcy scale. In geology and petroleum engineering 
permeability is measured in darcy units, with 1 darcy equal 
to 0.9869233 (µm)2. Typical permeabilities of soils are 105 
darcy for gravel, 1 darcy for sand, and 0.01 darcy for granite 3. 

Even though Darcy derived his law phenomenologically, 
on the basis of his own experimental observations, it can 
be derived also from the Navier-Stokes equations of fluid 
mechanics as applied to stationary, creeping, incompressible 
flow, assuming that the viscous resisting force depends 
linearly on the fluid velocity. Analytic calculations can be 
carried out on simple geometries. Thus, an analysis of 
laminar flow through a long cylindrical capillary of radius 
R  shows that the permeability of the capillary is given by 

2 / 8R  . Similarly the hydraulic permeability of a Hele-Shaw 
cell, consisting of two large parallel plates separated by a 
narrow gap spacing b , is given by 2 /12b . Combining simple 
geometries of this kind it is possible to derive approximate 
expressions of the hydraulic permeability of more complex 
materials, such as bundles of capillaries and beds of closely 
packed spheres. This approach to modeling the geometrical 
complexity of actual disordered media is an active field of 
research (Fig. 1).

Two-phase displacements

Many flows of interest involve the presence of an interface 
separating two different phases. Oil displacement by water in 
secondary oil recovery is an important example of two-phase 
displacement in a porous medium, in which the dynamics 
of the front between the two immiscible phases determine 
the efficiency of the recovery process. Printing, coating, 
impregnation, soil irrigation, and the rise of sap in plants are 
also examples of two-phase displacements.

If a cube of sugar or a biscuit is dipped in a cup of 
coffee or tea, the liquid quickly invades the pore spaces of 
the solid material, displacing the air initially present4.  The 
physical phenomenon behind this process of spontaneous 
fluid invasion, which seems to defy Earth’s gravitational 
attraction, is capillarity. The interface separating the invading 
fluid from the displaced air touches the walls of the material 
on each pore. Depending on the relative interfacial energies 
of the three phases present (solid, liquid, and gas), there 
is a non-zero capillary force acting on the fluid menisci on 

each pore and throat of the material. In the case of tea or 
coffee invading a cube of sugar or a biscuit, this force drives 
the liquid into the medium. With mercury in glass, however, 
the capillary force would drive the menisci in the opposite 
direction, because glass is not wetted by liquid mercury, 
i.e., the contact angle is >90o (Fig. 2).The dynamics of the 
invasion process indeed depend on the relative ability of the 
two fluids (displacing and displaced) to wet the walls of the 
disordered medium. If the invading fluid preferentially wets 
the medium, the displacement is favored by capillary forces 
and is referred to as imbibition (from the Latin verb imbibere, 
to drink in). Conversely, when the preferentially wetting fluid 
is the displaced one, capillary forces oppose the displacement 
of the menisci inside the pores. The corresponding process 
is called drainage. It plays a central role in hydrology when 
surface and subsurface water are removed, either naturally 
or artificially, from an area thus preventing erosion and the 
leaching of nutrients.

A second important issue is the stability of the interface 
separating two fluids. The displacement may be either stable 
or unstable, depending on the relative viscosity of the fluids 
involved. The displacement is stable when the displacing 
fluid is more viscous than the displaced fluid. Because of 

4 Len Fisher won the Ig Nobel prize in Physics in 1999 for his experiments on the optimal way of dipping a biscuit into tea or coffee, an experience that 
enhances flavor release by up to ten fold. For a full account, see L. Fisher (1999) Nature 397:469.
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Fig. 2. Capillary rise and fall of water and mercury in glass. Source: Wikimedia 
commons, created by M. Woland.
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capillary pressure fluctuations at the pore scale, the front at 
large scales is slightly irregular, but front disturbances cannot 
increase because the viscous pressure gradient on the side of 
the displacing fluid is larger than on the side of the displaced 
fluid. When the displacing fluid is less viscous than the 
displaced fluid (e.g., when water displaces oil) the situation 
is the opposite. Small front disturbances become amplified 
and rapidly growing fingers of the displacing fluid invade the 
displaced fluid, limiting the effectiveness of the displacement 
process. This is a very serious difficulty in secondary oil 
recovery and has motivated many research efforts [11].

The interfacial instability leading to viscous fingering 
is known as Saffman-Taylor instability [19]. In 1958, these 
authors studied two-phase displacements in a Hele-Shaw cell. 
The narrow gap of the cell results in high-friction (inertialess) 
bulk fluid motion that follows Darcy’s law, in analogy with 
flow in a disordered medium. Performing a linear stability 
analysis of the unperturbed front between the two fluids, 
Saffman and Taylor found that the interfacial tension along 
the front always damped infinitesimal perturbations of small 
wavelength; but, depending on the relative viscosity of the 
two fluids, viscous pressure could either damp or amplify 
infinitesimal perturbations of large wavelength. The linear 
stability of the front was thus controlled by two dimensionless 

ratios: the capillary number,  2Ca /vµ γ= , which compares 
the strength of viscous and interfacial forces, and the viscosity 
ratio  2 1M /µ µ= . Here 1µ  and 2µ  are the dynamic viscosities 
of displaced and displacing fluid, v  the average velocity of the 
front, and γ  its interfacial tension. Viscous fingers are formed 
when M 1< , covering a band of wavelengths that widens 
with Ca . Saffman and Taylor also performed experiments in 
which air (of negligible viscosity) slowly displaced a viscous 
fluid, and thereby confirmed the predictions of their linear 
stability analysis. They found that a dynamic competition 
between air fingers of different sizes that formed at the onset 
finally gave rise to a stationary single finger that occupied half 
of the cell width at large Ca . Their seminal work has been 
the starting point for a great deal of research activity on all 
possible aspects of viscous fingering and pattern formation 
resulting from this interfacial instability [2] (Fig. 3).

Differences in the wettability and viscosity of the fluids 
therefore provide a rationale for classifying two-phase fluid 
displacements in disordered media, as shown in Table 1.

Using quasi-two-dimensional transparent micromodels 
of porous media, Lenormand, Zarcone, and others explored 
these scenarios systematically and compiled their main 
findings in schematic phase diagrams, with Ca  and M  as 
the controlling parameters [13].

Very slow drainage is governed by capillary fingering. A 
fraction of the available channels are invaded by the less-
wetting fluid, following the order dictated by the values of 
the capillary pressure jump across the meniscus in each 
channel. This sequential invasion is well described by the 
model of invasion percolation, and the resulting pattern is a 
self-similar fractal. At larger Ca , unstable drainage results in 
a highly ramified pattern of invaded pores, also a self-similar 
fractal but of smaller fractal dimension. Its morphology 
and growth dynamics correspond to a process of diffusion 
limited aggregation, which describes the pattern formed 
by a growing unstable interface in an external field that 
obeys Laplace’s equation (Fig. 4). Finally, stable drainage 
displacements at large Ca  produce compact patterns.

Fast imbibition displacements lead to the same 
morphologies as fast drainage, because the dynamic 
contact angle increases with Ca  and makes the injected 
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Fig. 3. Viscous fingering in channel and radial geometries (schematic).

Table 1. Classification of two-phase fluid displacements based on differences in the wettability and viscosity of the fluids

 

Less wetting ⇒ More wetting Unstable drainage Stable drainage

More wetting ⇒ Less wetting Unstable imbibition Stable imbibition

µ2 < µ1 µ2 > µ1Fluid 2 ⇒ Fluid 1
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fluid invade the central part of the channels, as in drainage. 
However, slow imbibition displacements depend on the 
pore-to-channel aspect ratio. For a large aspect ratio, the 
injected fluid first wets the walls of the channels and then 
progressively invades the network by a sequence of collapses 
in the channels. At even slower displacements, the invasion 
mechanism is the flow of a precursor film ahead of the 
menisci, so that apparently disconnected filled channels 
may appear anywhere. For a small aspect ratio, invasion 
at moderate Ca  takes place by a sequence of channel by 
channel pore invasions that lead to a faceted domain whose 
shape is dictated by the underlying network topology. Finally, 
very slow displacements combine this invasion mechanism 
with the flow of the precursor film, so that compact clusters 
appear anywhere in the network. Imbibition is therefore 
complicated by the underlying geometry of the model porous 
medium and by a new mechanism of invasion, the flow of a 
precursor film, at very low flow rates.

Dynamics of capillary invasion in 
porous media

An often-studied scenario of stable imbibition is the invasion 
of a porous medium by a liquid that preferentially wets 
the walls and displaces the air initially present, as in the 
case of the biscuit dipped in coffee. This process occurs 
spontaneously and is driven by capillary forces.

An equation for the average position of the invading front 
versus time can be derived in a continuous (hydrodynamic) 
framework at the Darcy scale. The equation is obtained by 
combining Darcy’s law for the viscous pressure drop in the 
bulk flow with the average capillary pressure that acts on 
the different menisci, assuming a constant contact angle 
between the invading fluid and the inner walls of the porous 
medium. The solution ( )h t  is known as Washburn’s law. In 
the absence of gravity (e.g., for horizontal displacements), 
this law predicts that the average position of the imbibition 
front grows as the square root of time, 1/2~h t , so that the 
front slows down in time but never stops. When gravity 
resists capillary invasion, there is a crossover between this 
behavior at early times and an exponential slowing down 
at late times that finally brings the front to rest, although 
theoretically over an infinite time. The average position 
reached by the front is called Jurin’s height. It depends on the 
surface tension of the liquid-air interface, the contact angle 
of the liquid with the surface of the material, the density of 
the liquid, and the permeability of the porous medium.

Washburn’s law provides a very good description 
of capillary-driven fluid invasion of simple capillaries. 
Traditionally it has also been considered as an appropriate 
description of capillary invasion of disordered media, since it 
well describes the fast stages of invasion, up to the dramatic 
slowing down theoretically associated with approaching 
Jurin’s height.

Several years ago, however, capillary rise in porous media 
over very long durations was investigated. Using vertical 
cylindrical columns packed with glass spheres, several 
groups [6,12] showed that Washburn behavior was indeed 
observed in the initial stages of invasion, which lasted a few 
minutes. The slow advancement of the front at the end of this 
Washburn invasion, however, switched to a motion of small-
amplitude jumps on the pore scale that continued for hours. 
The average position followed a power law over time, rather 
than the predicted exponential dynamics, and did not seem 
to approach an equilibrium height asymptotically (Fig. 5).

The reasons for these unexpected observations remained 
elusive until recently, when a new theory of capillary rise in 
disordered media was proposed. This theory considers the 
different modes of motion that menisci go through on the 
pore scale, in the framework of a macroscopic (Darcy scale) 
description. Three main modes are considered. The first is a 
wetting mode, which describes the motion of the contact line 
on the pore scale driven by capillary forces, essentially in the 
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Fig. 4. Pattern of diffusion-limited aggregation obtained by allowing incident 
particles to perform a random walk and finally adhere to the aggregate. 
Different colors indicate different arrival times of the random walkers. 
Source: Wikimedia commons, public domain.
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Washburn regime, with a shape that is practically unchanged 
but with a velocity-dependent contact angle. The second is 
a threshold mode, which describes the local pinning of the 
contact line upon reaching a pore, followed by deformation 
of the meniscus until the contact angle reaches a critical value 
at which the contact line can resume its motion. These two 
modes alone reproduce the essential features of Washburn 
dynamics, although the final height is attained in finite time 
and depends only on the threshold value of the contact angle 
[23]. The third mode, called subcritical depinning, introduces 
a new mechanism of motion. On the pore scale there are 
pressure fluctuations, due to the mutual influence of menisci 
that are in different modes of motion at a given moment. 
These fluctuations are unimportant when the local pressure 
is capable of pushing the meniscus through the threshold 
mode. But when this is not the case the front remains locally 
pinned, so that the effectiveness of the fluctuations grows 
over time until, finally, the interface may depin subcritically 
due to random fluctuations. This mode of motion, responsible 
for the long-term behavior of capillary invasion, is associated 
with avalanches of the invading menisci that had been 
observed experimentally indeed in the long-term regime of 
capillary rise. The theory, moreover, predicts that capillary rise 
eventually comes to a halt, albeit at very long times that fall 
outside the range of currently available measurements [22].

Kinetic roughening

Interfacial growth driven by competing forces at different 
length scales is known to result in rough interfaces that 

exhibit scale-invariant properties. The morphology of the 
interface looks the same (i.e., it has the same statistical 
properties) at different magnifications, at least within a wide 
range. Scale-invariance is ubiquitous in nature (Fig. 6).

Stable imbibition fronts in disordered media are subject to 
the competing influence of surface tension, viscous pressure 
drop, capillary pressure fluctuations, and permeability 
variations. While surface tension and viscous pressure drop 
keep the front smooth at different length scales, capillary 
pressure fluctuations and permeability variations distort the 
front. The result is that an initially smooth front undergoes a 
kinetic roughening process [1], in which front fluctuations grow 
over time due to the progressive correlation of different points 
in the front, with increasing correlation length 1/~ z

c tξ . The root-
mean-square fluctuations of the front position grow over time 
according to ~W t β , until they saturate. The resulting front is 
scale-invariant and verifies ~W Lα , where L  is the lateral size 
of the system. The exponents α , β , and z  are called the 
roughness, growth, and dynamic exponent, respectively, and 
they satisfy the scaling relation / zα β = . Since α  is usually a 
non-integer, the rough front is a self-affine fractal object. This is 
called Family-Vicsek scaling, the simplest possible scenario of 
scale-invariant growth. In a pioneering work, Rubio et al. [18] 
found that it applied to stable imbibition displacements in two-
dimensional models of porous media consisting of Hele-Shaw 
cells packed with glass beads. The actual values of the scaling 
exponents are important because, following the concept of 
scale invariance in equilibrium critical phenomena, there are 
solid arguments to believe that the long-term, large-scale 
asymptotic behavior of growing interfaces does not depend 
on the microscopic details of the systems under study but 
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Fig. 5. Capillary rise of water in a vertical cylinder packed with 
glass beads. Measurements of the average position of the 
imbibition front vs. time are represented by different symbols 
corresponding to different bead diameters. Lines represent the 
predictions of a theory that considers three different modes of 
motion of the invading menisci. Adapted from [22].
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only on general properties, such as the space dimensionality 
and the interaction range. Hence a few basic models are 
sufficient to identify universality classes of kinetic roughening 
and their corresponding scaling exponents. This framework 
is well established for interfacial growth problems with local 
interactions. However, stable imbibition displacements in 
disordered media are intrinsically non-local: the dynamics of 
one point of the front depend on all other points, because of 
mass continuity. Accordingly, in spite of serious theoretical 
efforts [8–10,15], it is not yet clear to which universality class 
of kinetic roughening this problem belongs and which scaling 
exponents define it.

The Family-Vicsek scaling scenario can be extended by 
considering the way in which front fluctuations scale with the 
lateral size of the window of observation, i.e., ~ locW α . If they 
scale in the same way as they do with the lateral system 
size L , Family-Vicsek scaling is recovered. If not, three 
additional scaling scenarios (defined by the values of five 

scaling exponents that verify two scaling relations) are 
possible [17]. These anomalous scaling scenarios appear in 
interfacial problems in which the mean local slope of the 
front diverges in time, thus introducing a new correlation 
length in the growth direction [14]. A few years ago we 
showed that tailoring the disorder properties of the medium 
can lead to stable imbibition displacements with anomalous 
kinetic roughening [24,25]. The experiments were carried 
out in a laboratory model of an open fracture, a Hele-Shaw 
cell with quenched disorder consisting of random dichotomic 
variations in the gap thickness. When this disorder is 
persistent in the direction of displacement, it gives rise to 
rough fronts with very large local slopes and, consequently, 
to anomalous scaling (Fig. 7).

Avalanches, non-Gaussian velocity fluc
tuations and intermittency

Fluid invasion of porous and fractured media at low 
velocity (low Ca ) is dominated by fluctuations in capillary 
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Fig. 6. The concept of scale-invariance is exemplified here by Romanesco 
broccoli, shown at two magnifications. Public domain photographs by John 
Walker.
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Fig. 7. Stable imbibition fronts in a laboratory model of an open fracture with 
persistent disorder in the displacement direction (top), and scale-invariant 
growth of the interfacial fluctuations with time (bottom) both for the whole 
system size (main plot) and for a measuring window 256 times smaller 
(inset). Figures courtesy of J. Soriano.
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pressure arising from the disorder of the medium. The slow 
advancement of the front takes place by localized velocity 
bursts or avalanches. Avalanches represent the dominant 
mode of motion in the late stages of capillary rise in porous 
media, as discussed earlier, and they are also at the origin of 

the scale-invariant properties of invasion fronts.
In slow stable imbibition displacements, avalanches are 

triggered by capillary pressure fluctuations and suppressed 
by the interfacial tension of the invading front and by fluid 
viscosity. In the case of a porous medium modeled by a 
Hele-Shaw cell packed with glass beads, Dougherty and 
Carle [7] showed that the areas swept by the avalanches 
followed an exponential distribution with the characteristic 
size of the pore spaces. The burst dynamics in porous media 
are therefore controlled by pore-scale dynamics. This is in 
striking contrast to the case of an open fracture, where the 
length scale –1/2/ Ca ~ ( v)c κ µ=  at which the two damping 
mechanisms (interfacial tension and fluid viscosity) cross over 
plays a very relevant role. Considering an initially flat front, 
the lateral correlation length grows in time until it reaches c , 
and the front then reaches a statistically stationary state of 
saturated roughness. In this stationary state, the motion of 
the front is composed of local avalanches with a very wide 
distribution of lateral sizes, from the lower cutoff imposed by 
the characteristic size of the disorder to an upper cutoff given 
by c . This upper cutoff may be tuned by controlling the 
average velocity of the front, v . As v  approaches zero c  
diverges and so does the lateral correlation length, revealing 
that the limit of zero velocity (pinning) corresponds to a non-
equilibrium critical point. Near this point relevant quantities 
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Fig. 8. Probability distribution of areas spanned by local velocity bursts in the 
course of slow stable imbibition displacements, at constant flow rate, in our 
model open fracture. The main plot shows the rescaled data and a power-
law fit with an exponential upper cutoff. The inset shows that this upper 
cutoff depends on c  through the imposed velocity v .

Fig. 9. Normalized statistical distributions of V


 (the 
average velocity over a window of lateral size  ) of an 
imbibition front that invades our model open fracture at 
constant flow rate. The results correspond to two windows 
of observation, L=  (system size) and / 40L= , and two 
driving velocities, which combine to yield four different 
ratios  / c  . Symbols are the experimental values, and the 
solid lines the generalized Gumbel distributions with the 
same skewness. Figure courtesy of R. Planet.Co

nt
rib

 S
ci



197

Ortín

CONTRIBUTIONS to SCIENCE 11:189-198 (2015) www.cat-science.cat

such as lateral size, area and duration of local velocity bursts 
should be scale invariant; that is, they will follow power-law 
probability distributions over a very wide range of values, 
within the upper and lower bounds imposed by the cutoffs 
just discussed. An example of the probability distribution of 
avalanche amplitudes in slow imbibition displacements at 
constant flow rate, based on our model open fracture with 
random (non persistent) dichotomic gap thickness [21], is 
shown in Fig. 8.

Since local velocities of contiguous points in the front are 
laterally correlated up to a distance c , additional information 
about the dynamics of slow imbibition in our model open 
fracture can be obtained from scale-dependent statistics. The 
mean velocity of the front within a window of observation of 
lateral size   can be computed by taking the spatial average 
of the local velocities over a lateral distance  . The statistical 
distribution of this new quantity, V , is sensitively dependent 
on how   compares with c . When , the normalized 
statistical distribution of V  is heavily skewed towards values 
above the ensemble average and clearly non-Gaussian (Fig. 
9). Remarkably, the experimental distributions are accurately 
represented by generalized Gumbel distributions of the same 
skewness, with no other fitting parameters. The origin of this 
behavior is the fact that, for 

c≤  , V  is an average over strongly 
correlated local velocities. For larger windows of observation 
or larger capillary numbers, for which  / 1c >  , a Gaussian 
distribution of V  is progressively attained as the average 
involves more and more uncorrelated local velocities, in 
correspondence with the result of the central limit theorem. 
The skewness is controlled by the ratio / c  , which can be 
thought of as counting the effective number of independent 
degrees of freedom of the invading front [16].

Furthermore, the velocity V  is intermittent. This refers to 
the presence of anomalous temporal correlations, such that 
periods of low velocities and small accelerations alternate 
with periods of very large velocities and highly fluctuating 
accelerations (Fig. 10). Intermittency has been a key concept in 
hydrodynamic turbulence. It also has been found numerically 
in the Lagrangian velocities of fluid particles flowing through 
porous media [5]. A characteristic signature of intermittency 
is the observation of fat-tailed probability distributions of 
the mean-velocity increments ( ) ( ) ( )  V V t V tτ τ= + −∆

  
. The 

scale-dependent analysis is now carried out in terms of the 
spatial scale  , introduced earlier, and a new temporal scale 
τ . Our results for slow imbibition displacements in laboratory 
models of open fractures [3] show that the intermittent dynamics 
of the front are controlled again by the lateral correlation 
length of the front through the ratio / c  , as before, but also 

by a new time scale in the direction of invasion, cτ , such that 
intermittency depends only on / c   and / cτ τ  (Fig. 10). 
Not surprisingly, experimental results show that / vc dτ =  , 
where d  is the characteristic extent of the disorder in the 
direction of front advancement. Since both c  and cτ  vanish 
at high flow rates, intermittency is present only in slow 
imbibition displacements, dominated by capillary pressure 
fluctuations.

Conclusions

Understanding the complex spatiotemporal dynamics of 
fluid flows in disordered media is relevant for natural and 
industrial processes of importance, such as soil irrigation, 
water filtering, and secondary oil recovery. Progress in 
this direction is being achieved through the combination 

Co
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Fig. 10. Experimental results for slow stable imbibition in our model open 
fracture. Top: Mean front velocity on scale   ( / 4L= ) and its corresponding 
acceleration. Bottom: Statistical distributions of velocity increments ( )V τ∆

  for 
experimental conditions spanning a wide range of Ca , organized in terms of 
the same ratios / c   and / cτ τ . Distributions are shifted arbitrarily for visual 
clarity. The dashed curve represents a Gaussian distribution. Figure courtesy 
of X. Clotet.  
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of hydrodynamic models and analytical tools from non-
equilibrium statistical physics. 
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